Clone-based full-length RNA-seq for early diagnosis of cancer
Intra-tumor genetic heterogeneity imposes a great challenge on cancer therapy. Resistance to molecularly targeted therapies and chemotherapy can arise from selective growth of pre-existing sub-clones that carries drug-resistance m...
Intra-tumor genetic heterogeneity imposes a great challenge on cancer therapy. Resistance to molecularly targeted therapies and chemotherapy can arise from selective growth of pre-existing sub-clones that carries drug-resistance mutations, altered metabolic and/or epigenomic states, providing a survival advantages. Early detection of these subclonal states can thus significantly aid cancer therapy. However, attempts to profile various types of primary cancer cells using single-cell techniques are relatively poor. One of the major limitations is the significant dropout rate (i.e., loss of alleles) observed in single-cell RNA-seq. It severely affects our ability to leverage single cell RNA-seq to accurately profile somatic mutation, to reveal cancer driver mutation and even extract low/mid-level expressed genes and splicing. For that reason, most of the efforts to expose mutations that are critical for cancer growth and can subsequently lead to more effective treatment are based on the sequencing of bulk populations. However, due to the noise introduced by PCR, sequencing and alignment processes, bulk sequencing is limited to identify mutations with a frequency higher than 5%. Here we propose to develop a novel 3D clone-based full-length RNA-seq profiling technology. A preliminary version of this technology for digital profiling of mRNA, already allowed us to significantly improve sensitivity comparing to gold-standard single-cell RNA-seq methods. Using this preliminary version on clones of lung adenocarcinoma, we revealed novel cancer stem like subpopulation that could not be detected using regular single cell RNA-seq maps. Altogether, improving the ability to detect rare mutations (<5%), splicing events and transcriptional variation between cancer cells, will be an extremely powerful tool for early diagnosis of cancer and effective means to improve personalized based drug treatment decision making.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.