Climate Advanced Forecasting of sub seasonal Extremes
Climate extremes such as heat waves or tropical storms have huge social and economic impact. The forecasting of such extreme events at the sub-seasonal time scale (from 10 days to 3 months) is challenging. Since the atmosphere and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Blue-Action
Arctic Impact on Weather and Climate
8M€
Cerrado
PCI2022-135019-2
CENTER OF EXCELLENCE FOR WEATHER AND CLIMATE PHASE 3
492K€
Cerrado
CENAE
compound Climate Extremes in North America and Europe from...
1M€
Cerrado
EUCLIPSE
EU Cloud Intercomparison Process Study and Evaluation Proje...
5M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Climate extremes such as heat waves or tropical storms have huge social and economic impact. The forecasting of such extreme events at the sub-seasonal time scale (from 10 days to 3 months) is challenging. Since the atmosphere and the ocean are coupled systems of enormous complexity, in order to advance sub-seasonal predictability of extreme events, it is crucial to train a new kind of interdisciplinary top-level researchers. CAFE research is structured in three WP: Atmospheric and oceanic processes, Extreme events and Tools for predictability, and brings together an interdisciplinary team of scientists. Objectives: Study of the relation between RWPs and the large scale environment, and the resulting limit of predictability; Statistical characterization of MJO events, dependence on climatic factors, and simple modelling to evaluate predictability; Development of diagnosis tools for identification and tracking of the MJO, blocking, waves and oceanic structures; Analysis of climatic changes in weather patterns and their relation with new climatic phenomena and extreme events in Europe; Estimation of probabilities for severe damages due to extreme events associated to ENSO; Validation of the hypothesis of cascades of extreme events and effects of a non-stationary climate; Estimation of exceedance probabilities for intensity of severe atmospheric events, including windstorms and hurricanes; Assessment of the response of extreme weather events for different levels of stabilized global warming and comparison with their response to internal modes of climate variability; Development of a procedure to improve the predictability of the onset of monsoon; Advanced statistical analysis of dynamic associations between SSS and extreme precipitation events; Study of predictability of large-scale atmospheric flow patterns over the Mediterranean connected to extreme weather; Systematic quantification of the predictability potential of a SWG of analogues of atmospheric circulation.