Clearance Of Microbial Biofilms by Advancing diagnostics and Therapy
Every year chronic infections in patients due to biofilm formation of pathogenic bacteria are a multi-billion Euro burden to national healthcare systems. Despite improvements in technology and medical services, morbidity and morta...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIOFAGE
Interaction Dynamics of Bacterial Biofilms with Bacteriophag...
1M€
Cerrado
OUTSMART-infection
Microbiome centered prediction and prevention of recurrent i...
3M€
Cerrado
BIOinFILM
Shedding light on the key molecular determinants regulating...
157K€
Cerrado
RTC-2015-3184-1
Nuevas estrategias para el control de infecciones nosocomial...
472K€
Cerrado
GEM-SEE-Achro
GEM-SEE-Achro: Genomic Exploration—Mapping the Spread, Evolu...
159K€
Cerrado
OPATHY
From Omics to Patient Improving Diagnostics of Pathogenic Y...
3M€
Cerrado
Información proyecto COMBAT
Duración del proyecto: 60 meses
Fecha Inicio: 2017-04-24
Fecha Fin: 2022-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Every year chronic infections in patients due to biofilm formation of pathogenic bacteria are a multi-billion Euro burden to national healthcare systems. Despite improvements in technology and medical services, morbidity and mortality due to chronic infections have remained unchanged over the past decades. The emergence of a chronic infection disease burden calls for the development of modern diagnostics for biofilm resistance profiling and new therapeutic strategies to eradicate biofilm-associated infections. However, many unsuccessful attempts to address this need teach us that alternative perspectives are needed to meet the challenges.
The project is committed to develop innovative diagnostics and to strive for therapeutic solutions in patients suffering from biofilm-associated infections. The objective is to apply data-driven science to unlock the potential of microbial genomics. This new approach uses tools of advanced microbiological genomics and machine learning in genome-wide association studies on an existing unprecedentedly large dataset. This dataset has been generated in my group within the last five years and comprises sequence variation and gene expression information of a plethora of clinical Pseudomonas aeruginosa isolates. The wealth of patterns and characteristics of biofilm resistance are invisible at a smaller scale and will be interpreted within context and domain-specific knowledge.
The unique combination of basic molecular biology research, technology-driven approaches and data-driven science allows pioneer research dedicated to advance strategies to combat biofilm-associated infections. My approach does not only provide a prediction of biofilm resistance based on the bacteria´s genotype but also holds promise to transform treatment paradigms for the management of chronic infections and by interference with bacterial stress responses will promote the effectiveness of antimicrobials in clinical use to eradicate biofilm infections.