Clean and efficient microCHCP by micro turbine based hybrid systems
Fit4Micro aims to develop a hybrid microCHP unit running on sustainable liquid biofuels. Application is foreseen at multi-family houses, and more specifically at remote and/or off-grid locations. The innovative system is based on...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SME-2015-0553
A new generation of efficient micro -generation, micro-CHP a...
54K€
Cerrado
FlexiFuel-SOFC
Development of a new and highly efficient micro scale CHP sy...
6M€
Cerrado
FLAMINCO
FLAmeless affordable high efficiency MIcro turbine system...
2M€
Cerrado
ECOJET
Cost effective high efficient micro gas turbine for micro C...
2M€
Cerrado
FLAMINCO
Flameless affordable and high efficency micro turbine system...
71K€
Cerrado
EFFGT
Aurelia Turbines proof of concept for very high efficient...
71K€
Cerrado
Información proyecto Fit4Micro
Duración del proyecto: 49 meses
Fecha Inicio: 2022-08-23
Fecha Fin: 2026-09-30
Líder del proyecto
MITIS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
5M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Fit4Micro aims to develop a hybrid microCHP unit running on sustainable liquid biofuels. Application is foreseen at multi-family houses, and more specifically at remote and/or off-grid locations. The innovative system is based on a double shaft micro gas turbine (mGT) combined with a novel humidification unit. This unique combination leads to very high electrical efficiencies (>40%) as well as a very flexible heat:power ratio. Low emissions are achieved by the application of flameless combustion, and a high GHG emission reduction is obtained by using truly advanced, RED2 compliant biofuel.
Use of a mGT as core-unit in Fit4Micro is ideal for domestic usage, as the system has very low noise output and is vibration free. Furthermore, rapid response times and fuel-flexible operation make this the ideal base for a highly efficient hybrid CHP system, resilient to changes in (local) fuel and power markets, empowering the consumers through digital solutions. Furthermore, the Fit4Micro unit will be integrated with a compression heat pump, an innovative adsorption and a solar PV system through the DC power system avoiding transmission losses. A smart control system will be developed to enable optimal performance at all times.
Efficient fuel distribution and off-grid operation of Fit4Micro is enabled by using sustainable liquid biofuels. These fuels will be produced from biomass residues and organic waste streams, through fast pyrolysis followed by mild hydro-processing yielding a hydrotreated pyrolysis oil (HPO). In Fit4Micro the objective is to widen the feedstock basis and lower the fuel costs by i) using residues as the primary feedstock, and ii) by limiting hydrogen consumption by application of mild processing conditions.
Besides technological development work, the Fit4Micro project includes specific activities on socio-economic and environmental sustainability, public perception, gender dimensions, market aspects, the regulatory framework & policies.