This proposal brings together the field of chromatin evolution and state-of-the-art structural biology to advance our understanding of a fundamental question: origin of chromatin structural and regulatory complexity.
Eukaryotes an...
This proposal brings together the field of chromatin evolution and state-of-the-art structural biology to advance our understanding of a fundamental question: origin of chromatin structural and regulatory complexity.
Eukaryotes and most groups of archaea organize their genomes in the form of histone-based chromatin. Conservation of histones across the tree of life goes beyond protein sequence and histone fold. Tertiary arrangement of histones and DNA geometry in archaeal nucleosomes resemble those in eukaryotes; however, archaea can form special hypernucleosomes and slinky-like arrangements. Similarly to eukaryotes, some archaea have multiple histone variants and extended histone tails, although it is unclear whether their structural and regulatory roles are conserved. Eukaryotes inherited histone-based chromatin from archaea, however, the origins of eukaryotic chromatin complexity are enigmatic.
Therefore, this proposal will address the 3D organization of chromatin in archaea to advance the understanding of chromatin evolution. We will test the following hypotheses: archaeal chromatin along with hypernucleosomes contains multiple open structures to maintain DNA accessibility and allow polymerase passage; histone variant exchange and histone tails in archaea play an important role in chromatin compaction similarly to eukaryotes. To test our hypotheses, we will synergistically apply state-of-the-art cryo-electron microscopy (cryo-EM) in situ and in vitro to selected archaeal systems. In situ cryo-EM will provide structural information about chromatin in native context, while cryo-EM of in vitro reconstituted chromatin will provide high-resolution structural information. Structural analysis complemented with biochemical, biophysical characterization and nucleosome positioning data will provide insights into 3D chromatin architecture in archaea in the context of eukaryotic chromatin evolution.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.