This project lifts the blindness of nuclear magnetic resonance (NMR) spectroscopy to molecular chirality. First, we will observe chirality-sensitive magnetoelectric effects. Based on these effects, a new branch of molecular spectr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HyperQ
Quantum hyperpolarisation for ultrasensitive nuclear magneti...
9M€
Cerrado
CHIRAX
X-ray spectroscopy of molecular chirality in solutions
2M€
Cerrado
PRESOBEN
PREcision Studies with Optically pumped Beams of Exotic Nucl...
2M€
Cerrado
FunMagResBeacons
Functionalized Magnetic Resonance Beacons for Enhanced Spect...
3M€
Cerrado
CTQ2016-75253-P
CARACTERIZACION ESPECTROSCOPICA EN FASE GAS DE LA ESTRUCTURA...
87K€
Cerrado
PID2021-125015NB-I00
DESARROLLO DE NUEVAS TECNICAS MULTIFOTONICAS, MARCADO NO COV...
169K€
Cerrado
Información proyecto NMER
Duración del proyecto: 63 meses
Fecha Inicio: 2022-03-11
Fecha Fin: 2027-06-30
Líder del proyecto
UNIWERSYTET WARSZAWSKI
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
This project lifts the blindness of nuclear magnetic resonance (NMR) spectroscopy to molecular chirality. First, we will observe chirality-sensitive magnetoelectric effects. Based on these effects, a new branch of molecular spectroscopy (abbreviated as NMER) is proposed, which will enable us to identify enantiomers directly without requiring chemical shift reagents or chiral solvents. Direct chiral NMR effects are very small and have not been previously detected, but this proposal will utilize several unique new strategies, such as hyperpolarization techniques and novel instrumentation, to dramatically enhance the chirality-sensitive NMR signals. This new approach is necessary to observe chirality-sensitive effects in solution at frequencies lower than 10 GHz. It permits 1) the direct discrimination of chiral molecules, 2) selective magnetic resonance imaging (MRI) of chiral molecules, and 3) determination of the absolute configuration of the molecule. In contrast to standard methods used in NMR, it does not require chemical modification of the sample. Consequently, it has many potential application fields ranging from analytical chemistry (determination of enantiopurity, resolution of complex mixtures of chiral substances), biochemistry (studies of interactions between chiral molecules), pharmaceutical science (diagnostic imaging, studies of the pharmaceutical mechanism of action). At the same time, the new methodology will dramatically increase the detection sensitivity, rendering it possible to 4) record NMR spectra from molecules in the gas phase under conditions of low partial pressure. This unique form of spectroscopy will be used as an analytical tool and will permit studies of chiral molecules interactions. In combination with state of the art quantum computations it will provide valuable data on NMR tensors and allow models of fundamental interactions involving chirality to be tested on the molecular scale.