Innovating Works

CHEERS

Financiado
Chirality controlled spin to charge interconversion in Tellurium Consumer electronics plays an ever-greater role in our daily lives. This is reflected in the fact that electronics already account for 4% of global energy consumption. This rate is expected to triple in the coming years, generati... Consumer electronics plays an ever-greater role in our daily lives. This is reflected in the fact that electronics already account for 4% of global energy consumption. This rate is expected to triple in the coming years, generating a major environmental issue and calling for energy saving solutions. Spintronics is a leading technology with the potential to produce novel high-performance low-power devices. Central to these devices is the so-called spin to charge interconversion (SCI), where a spin polarisation is converted into a detectable electric signal and vice-versa. Ongoing efforts focus on the search for materials exhibiting optimal SCI, often found in systems with low structural symmetry. Within these, chiral materials are highly appealing as they represent the ultimate expression of broken symmetry. Chiral molecules have been shown to act as spin filters, but, due to their low electrical conductance, they cannot be implemented in electronic devices. Recently, the host group showed that Tellurium (Te), composed of chiral atomic chains connected via van der Waals (vdW) interactions, displays an exotic and chirality-dependent charge to spin conversion. However, the reciprocal effect was not studied, and the SCI efficiency, which is crucial for evaluating the technological potential of Te, was not obtained. CHEERS aims to explore the real potential of Te for advanced spintronic applications. We will combine magneto-optical kerr effect, spin pumping and magnetotransport experiments to quantify Te’s SCI efficiency, while unravelling the different physical mechanisms behind it. Finally, we will explore SCI at the atomically sharp vdW interface of Te and a layered magnet. With these efforts, CHEERS expects to acquire fundamental scientific knowledge with straightforward industrial applications. Moreover, CHEERS will offer high-quality interdisciplinary research and transversal skills training to an aspiring young scientist, helping her build a promising career. ver más
31/12/2025
Presupuesto desconocido
Duración del proyecto: 32 meses Fecha Inicio: 2023-04-13
Fecha Fin: 2025-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-04-13
HORIZON EUROPE No se conoce la línea exacta de financiación, pero conocemos el organismo encargado de la revisión del proyecto.
Líder del proyecto
ASOC CIC NANOGUNE No se ha especificado una descripción o un objeto social para esta compañía.