Chiral catalytic membrane reactor for high efficient preparation of enantiopure...
Chiral catalytic membrane reactor for high efficient preparation of enantiopure compounds
Chirality is a universal phenomenon in nature. Many pharmaceuticals, nutraceuticals, and agricultural chemicals have their own stereoisomers, with each enantiomer showing a unique biological activity. The production of pure enanti...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Chirality is a universal phenomenon in nature. Many pharmaceuticals, nutraceuticals, and agricultural chemicals have their own stereoisomers, with each enantiomer showing a unique biological activity. The production of pure enantiomer is therefore essential especially for medication safety and efficacy. In this project, a novel membrane reactor technique is proposed for efficient production of important chiral intermediates in the pharmaceutical industry and agrochemistry. New homochiral metal-organic framework (MOF) materials and membranes will be integrated with the latest development in ceramic hollow fibres, in an objective of generating a catalytic membrane reactor (CMR) coupling asymmetric synthesis and enantioselective separation into a single micro-tube. Such CMR to be developed is composed of a homochiral MOF membrane layer supported on a ceramic hollow fibre substrate with a unique dual-structure, i.e. a porous functional layer for preparing the MOF membrane and a finger-like layer where MOF-based asymmetric catalysts can be deposited. Reactants fed to the tube side of the hollow fibre substrate will be converted into desired enantiomer and by-products. Meanwhile, the desired enantiomer recognized by the MOF membrane materials coated on the exterior functional layer will adsorb on the membrane surface, followed by diffusing through the membrane for enantioselective separation, with the by-products rejected by the membrane and collected at the outlet. Such an original interdisciplinary approach of producing chiral intermediates involves the latest multidisciplinary knowledge and techniques in material, chemistry, membrane, chemical engineering and catalysis, and has not yet been attempted to date. Moreover, the successful delivery of this project allows possible assembling of such micro-tubular CMR into an industrial scale prototype device or system, for a larger scale production of chiral intermediates.