Chemometric histopathology via coherent Raman imaging for precision medicine
The CHARM project aims to radically transform the cancer diagnosing process and bring the emerging field of digital histopathology to the next level, introducing a novel technology for tissue analysis, capable to measure the molec...
The CHARM project aims to radically transform the cancer diagnosing process and bring the emerging field of digital histopathology to the next level, introducing a novel technology for tissue analysis, capable to measure the molecular composition of the patient tissue samples and to recognize and classify the tumor in a completely label/stain-free way. The instrument, integrated with artificial intelligence (AI), will offer to histopathologists a reliable, fast and low-cost Clinical Decision Support System (CDSS) for cancer diagnosis and personalized cancer therapy. We will develop a Class C, (IVDR, In-Vitro Diagnostic Regulation) medical device consisting of a turnkey low-cost broadband Coherent Raman Scattering (CRS) microscope (enabled by our patented graphene-based fiber laser technology), named the Chemometric Pathology System (CPS), integrating an AI module based on deep learning, statistics and machine learning. The CPS will be capable of automatically analyzing unstained tissues, providing fast and accurate tumour identification (differentiating normal vs neoplastic tissues) with accuracy >98% and final tumour diagnosis prediction (differentiating and grading histologic subtypes) with accuracy >90%, thus offering to the histopathologist a decision tree compatible with existing clinical protocols but with biomolecular-based objectivity and reduced time to result (TRL6). We will develop a robust business case for the application and ensure the project continuation to higher TRLs and the final market entrance. This proposal builds on the results of the ERC POC project GSYNCOR.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.