Topology provides mathematical tools to sort objects according to global properties regardless of local details, and manifests itself in various fields of physics. In solid-state physics, specific topological properties of the ban...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CNTQC
Curved nanomembranes for Topological Quantum Computation
2M€
Cerrado
ExcitingTopology
Topological order beyond the equilibrium ground state drive...
213K€
Cerrado
LOWT-MFM-OF-TIS
Low Temperature Magnetic Force Microscopy Study of Topologic...
100K€
Cerrado
PCI2022-132927
MAGNETIC TOPOLOGICAL INSULATORS FOR ROBUST MAJORANA BOUND ST...
129K€
Cerrado
NovelTopo
Novel topological phases of matter From topological invaria...
195K€
Cerrado
TROPIC
Gaining leverage with spin liquids and superconductors
2M€
Cerrado
Información proyecto CASTLES
Duración del proyecto: 71 meses
Fecha Inicio: 2017-10-04
Fecha Fin: 2023-09-30
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Topology provides mathematical tools to sort objects according to global properties regardless of local details, and manifests itself in various fields of physics. In solid-state physics, specific topological properties of the band structure, such as a band inversion, can for example robustly enforce the appearance of spin-polarized conducting states at the boundaries of the material, while its bulk remains insulating. The boundary states of these ‘topological insulators’ in fact provide a support system to encode information non-locally in ‘topological quantum bits’ robust to local perturbations. The emerging ‘topological quantum computation’ is as such an envisioned solution to decoherence problems in the realization of quantum computers. Despite immense theoretical and experimental efforts, the rise of these new materials has however been hampered by strong difficulties to observe robust and clear signatures of their predicted properties such as spin-polarization or perfect conductance.
These challenges strongly motivate my proposal to study two-dimensional topological insulators, and in particular explore the unknown dynamics of their topological edge states in normal and superconducting regimes. First it is possible to capture information both on charge and spin dynamics, and more clearly highlight the basic properties of topological edge states. Second, the dynamics reveals the effects of Coulomb interactions, an unexplored aspect that may explain the fragility of topological edge states. Finally, it enables the manipulation and characterization of quantum states on short time scales, relevant to quantum information processing. This project relies on the powerful toolbox offered by radiofrequency and current-correlations techniques and promises to open a new field of dynamical explorations of topological materials.