Characterizing the fitness landscape on population and global scales
The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence...
The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.