Changing the tempo of neuronal development to modulate neural circuit function a...
Changing the tempo of neuronal development to modulate neural circuit function and plasticity
The timing of neuronal development is highly variable depending on the cell type or species. In particular human cortical neurons display a considerably protracted tempo of development, at the basis of human brain neoteny. The mec...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FUNCOPLAN
Functions of plasticity in adult born neurons
2M€
Cerrado
SAF2017-83117-R
MECANISMOS DE FORMACION DE LAS REDES NEURONALES DE LAS LAMIN...
303K€
Cerrado
IN-BRAIN
IN VIVO REPROGRAMMING A NOVEL ROUTE TO BRAIN REPAIR
2M€
Cerrado
PID2019-107340GB-I00
PLASTICIDAD NEURAL DURANTE EL ENVEJECIMIENTO Y LA REMODELACI...
90K€
Cerrado
Neuro-ReprOmics
Deconstructing in vivo glia to neuron conversion
213K€
Cerrado
ENAC_IN_ANSCS
The role of epithelial sodium channels in adult neural stem...
162K€
Cerrado
Información proyecto TEMPOPLAST
Duración del proyecto: 24 meses
Fecha Inicio: 2024-04-22
Fecha Fin: 2026-04-30
Líder del proyecto
VIB VZW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
176K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The timing of neuronal development is highly variable depending on the cell type or species. In particular human cortical neurons display a considerably protracted tempo of development, at the basis of human brain neoteny. The mechanisms underlying neuronal neoteny start to be unravelled, but their significance for brain function and plasticity remain poorly known, despite their implications for brain diseases and repair.
This project will combine innovative technologies developed by the applicant and the host lab, including brain transplantation, molecular manipulation of developmental tempo, and neural connectivity.
Taking advantage of recent findings of the host lab that link metabolism to neuronal maturation speed, we will manipulate mitochondrial function to accelerate the maturation of human neurons in a xenotransplanted mouse model, and conversely, to decelerate murine neurons within the mouse visual cortex. We will thus examine how increasing or decreasing neuronal maturation rates influence functional development, synaptic functions, and experience-dependent plasticity, across time and species. Using advanced techniques including electrophysiology, in vivo calcium imaging, and monocular deprivation neural plasticity paradigms, we will explore the impact of neuronal developmental tempo on cortical circuit function and plasticity. Finally and most excitingly we will use the same paradigms to investigate whether transplanted juvenile neurons can induce plasticity in the neuronal networks of the adult host brain. Additionally, chemogenetic and transsynaptic tracing approaches will dissect potential mechanisms underlying the observed effects. Using MERFISH spatial transcriptomics, we aim to unveil molecular programs driving plasticity induction. This project holds significant potential to reshape our understanding brain development and plasticity, and its implications for neurodevelopmental diseases and therapeutic interventions in the ageing brain.