Challenging the Standard Model with suppressed b to d l+l- decays
The Standard Model (SM) of particle physics is one of the most complete theories in science with a hugely successful predicting power. However, it is unable to explain critical observed phenomena, such as the dominance of matter o...
The Standard Model (SM) of particle physics is one of the most complete theories in science with a hugely successful predicting power. However, it is unable to explain critical observed phenomena, such as the dominance of matter over antimatter in the universe, and thus needs to be extended. Rare decays of b quarks to an s quark and two leptons (b to sll) are very sensitive to the existence of New Physics (NP). Recent measurements of their properties show intriguing deviations with respect to SM predictions that could be the first clear hint of NP in decades. In this project, I will explore the related and even more suppressed b-quark decays to a d quark and two leptons (b to dll), which are so far poorly known and will shed light on the type on NP that could explain the observed discrepancies. For this purpose, my team will develop innovative analysis tools and exploit the uniquely large sample of b hadrons from the LHCb experiment.
The CLIMB project will address two specific questions: are the deviations observed in b to sll decays also present in b to dll transitions? Are there new sources of matter-antimatter asymmetry beyond the SM in b to dll processes?
The first will be addressed by measuring differential decay probabilities and lepton universality ratios in b to dll decays for the first time.
In the SM, these transitions are related by the quark-mixing matrix, the hierarchy of which is not fully understood. NP models aim to provide an explanation for the structure observed in nature. Knowing the properties of b to dll decays precisely is a critical input in this endeavour.
The second question will be answered by measuring matter-antimatter asymmetries in b to dll decays with unprecedented precision, providing very strong constraints to NP models predicting an enhanced quantity. The main challenge of this programme lies in the study of very suppressed decays. Innovative reconstruction and selection techniques will be developed to access them.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.