Challenging The Limits Of Molecular Quantum Interference Effects
Over the last ten years, there has been a growing interest in quantum interference effects observed in molecules. Remarkably, given their fragility in mesoscopic physics, molecular quantum interference effects can be readily obser...
Over the last ten years, there has been a growing interest in quantum interference effects observed in molecules. Remarkably, given their fragility in mesoscopic physics, molecular quantum interference effects can be readily observed at room temperature in solution. This robustness comes from the extremely small size of the molecular components (1-2nm) and thereby the small dimensions over which phase coherence is required. The aim of this project is to challenge the limits of molecular quantum interference effects delivering clear predictions of how to realise these effects in three challenge areas. 1. Beyond single molecules: intermolecular interference effects. This work package will investigate interference effects between molecules and in monolayers to find systems where intermolecular interference effects emerge with a long-term view to materials. 2. Beyond classical electronics: Quantum gates Given that interference effects are an indication of phase coherence being maintained across the molecule, we should be able to exploit the quantum nature of the system for more than simply suppressing current. Proposals exist in the literature for realising a quantum computer through scattering, so this work package will investigate use the interference effects in molecules to suggest candidate systems for this type of quantum computer. 3. Beyond electron transport: Controlling vibrational energy redistribution This work package will focus on how to use interference effects to control vibrational energy redistribution within single molecules with an aim of using this to modulate product ratios in organic reactions. This project takes ideas that have come out of molecular electronics and tests the scope of their application in three neighbouring areas: supramolecular chemistry, quantum computing and organic chemistry. This project takes a first step in these directions, and success in any work package has the possibility to open a whole new field of research.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.