Challenging the fundamental limit of angular dispersion by hybridizing light and...
Challenging the fundamental limit of angular dispersion by hybridizing light and matter
Interference is one of the most fundamental phenomena in optics, allowing us to confine, filter, manipulate and steer light with exquisite precision. It is at the core of thin-film optics and nanophotonics, two areas of science th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2012-31392
DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS
102K€
Cerrado
FIS2012-38244-C02-02
ALGORITMOS DE PROPAGACION DE HACES DE LUZ. MODELIZACIONES DE...
30K€
Cerrado
FIS2015-64951-R
ELECTRODINAMICA CLASICA Y CUANTICA DEL ACOPLO LUZ-MATERIA
139K€
Cerrado
PID2019-104268GB-C21
MANIPULACION DE LA COHERENCIA Y POLARIZACION DE CAMPOS ELECT...
52K€
Cerrado
NanoAtom
Quantum Optical Physics with Neutral-Atom Waveguide-QED
2M€
Cerrado
CompExDyn
Complex Exciton Dynamics in Materials: a First-Principles Co...
2M€
Cerrado
Información proyecto HyAngle
Duración del proyecto: 65 meses
Fecha Inicio: 2023-06-14
Fecha Fin: 2028-11-30
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Descripción del proyecto
Interference is one of the most fundamental phenomena in optics, allowing us to confine, filter, manipulate and steer light with exquisite precision. It is at the core of thin-film optics and nanophotonics, two areas of science that catalyse major scientific and industrial advances. One fundamental property of optical interference, however, constitutes a major limitation – the characteristics of any interference-based structure depend on the angle between the light wave and the structure itself (e.g. the transmission wavelength of optical interference filters shifts strongly when the angle of incidence changes). So far, this ‘angular dispersion’ effect remains a largely unchallenged fundamental limit in optics.
HyAngle now proposes a novel strategy based on hybridizing light and matter states to break the angular dispersion limit. By tuning the coupling strength and offset between a photonic resonance formed by optical interference and the electronic resonance causing optical absorption in a material, I expect to be able to realize interference-based optical devices with spectrally sharp and angle-independent transmission, reflection and emission. We will explore the physics, potential and limitations of this approach by developing and studying dispersion-free optical filters, colour converters and LEDs with narrowband spectra. We will then pursue two specific applications, namely hyperspectral cameras and bio-implantable lensless fluorescence microscopes, where our devices will enable major advances in capability and unprecedented performance in deep tissue applications.
Our devices use organic materials that can be readily processed by high-throughput vacuum deposition and even from solution. The amorphous nature of these materials renders them intrinsically compatible with the dielectric and metallic films widely used in the optics and display industry. The strategy of HyAngle thus bears great potential for rapid development and broad application.