CHallenges in ANalysis and GEometry between mean and scalar curvature
The interplay between Analysis and Geometry has led to a number of spectacular achievements such as the proof of the Poincaré conjecture by Perelman. The goal of this proposal is to establish a research group that will make striki...
The interplay between Analysis and Geometry has led to a number of spectacular achievements such as the proof of the Poincaré conjecture by Perelman. The goal of this proposal is to establish a research group that will make striking progress along the following two directions, that reflect the two souls, extrinsic and intrinsic, of Riemannian Geometry, as well as their mutual interaction.
Minimal surfaces, namely surfaces of zero mean curvature, have been an object of mathematical study since the 18th century (with pioneering work by Lagrange and Euler), and yet remain at the heart of many problems to this day. I aim at shading new light on their understanding, by means of a thorough investigation of the Morse index as an observable on the space of minimal cycles, both in general 3-manifolds of positive curvature and in space forms, towards higher Urbano-type theorems and beyond min-max techniques.
Partly motivated by the study of data sets for the Einstein equations on the one hand, and by a far-reaching program by Gromov on the other, we also want to systematically study the interplay between the scalar curvature of a manifold and the mean curvature of its boundary. The project, which builds on my recent contributions and long-term experience in the field, relies on a combination of diverse elliptic and parabolic techniques, and aims at developing effective deformation methods that will have a variety of applications.
These directions, while seemingly different, are deeply intertwined both at the technical and conceptual level, and incarnate the primary goal of redefining the state of the art in the investigation of infinite-dimensional spaces of solutions to fundamental geometric problems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.