Innovating Works

EvolutioNeuroCircuit

Financiado
Cellular and genetic bases of neural circuits evolution
Sensory systems encode the world around us to produce context-dependent appropriate behaviours. However, we know little about the way new sensory evoked behaviours arise as neural circuits are re-shaped during evolution. Tackling... Sensory systems encode the world around us to produce context-dependent appropriate behaviours. However, we know little about the way new sensory evoked behaviours arise as neural circuits are re-shaped during evolution. Tackling this question requires a deep understanding of the circuits underlying specific behaviours and integration of this knowledge with tools from other fields, including evolutionary and developmental biology. Recent technological advancements on neural circuit interrogation and genome editing have put progress on this fundamental biological question within reach. The olfactory system of the larval stage of the fly Drosophila melanogaster and related species is an ideal model for investigating these questions because (i) D. melanogaster has pioneered both the fields of population genetics and neurogenetics and (ii) its olfactory system is one of the best-characterised neural circuits. We will address the question of how olfactory circuits evolve by studying four species with divergent odour-guided behaviours through the following multidisciplinary aims: 1. Which olfactory pathways are targeted in the evolution of ecological specialisation? – Combining high-throughput behavioural assays, optogenetics and calcium imaging in the larva of all four species we will determine whether/which olfactory pathways have switched valences or sensitivity. 2. How have central neural circuits diverged? – We will address this question at unprecedented resolution through whole-brain calcium imaging and serial electron microscopy reconstruction. 3. What are the molecular and genetic bases of neural circuits rewiring during evolution? – Using transcriptomic profiling we will identify differentially expressed genes in conserved and divergent circuits across species, and functionally probe selected candidates to establish causality. 4. How do evolutionary forces shape olfactory circuits? – We will investigate this question using field studies and population genetics ver más
31/01/2026
1M€
Duración del proyecto: 87 meses Fecha Inicio: 2018-10-31
Fecha Fin: 2026-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-10-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
THE FRANCIS CRICK INSTITUTE LIMITED No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5