All living things are subject to attack by viruses. Cells have evolved many different immune systems to protect themselves, including the adaptive and innate immune systems of vertebrates and the CRISPR and restriction:modificatio...
All living things are subject to attack by viruses. Cells have evolved many different immune systems to protect themselves, including the adaptive and innate immune systems of vertebrates and the CRISPR and restriction:modification systems of bacteria. Viruses have developed potent countermeasures to subvert these systems, and this perpetual arms race has been a strong driving force in evolution throughout the history of life on Earth. CBASS (cyclic-oligonucleotide-based antiphage signalling systems) is a newly discovered bacterial immune system with evolutionary links to the eukaryotic cGAS-STING innate immune pathway. CBASS generates an astonishing array of cyclic di- and tri-nucleotide signalling molecules that in turn activate a diverse range of effector proteins to combat phage infection. These cyclic nucleotide second messengers thus lead to life or death decisions for infected cells. CBASS are abundant in pathogens and the microbes that dominate the human digestive system: this microbiome and the viruses that infect it are now implicated in diverse aspects of human health. This is a powerful and complex defence system, but fundamental aspects are not understood. How is viral infection detected by bacteria, triggering cyclic nucleotide production? What are the consequences for the cell: does activation inevitably lead to cell death, or is there a mechanism to switch it off? What role does protein modification play? Furthermore, how do viruses overcome CBASS defence? These questions will be addressed using a cutting-edge combination of structural and molecular biology, bioinformatics, biochemistry and microbiology. We propose a ground-breaking study of CBASS defence, with a focus on discovery of new enzymes, pathways and mechanisms. This work will open up new paradigms in bacterial cell signalling with broad implications for our understanding of microbial physiology, infection and the evolution of immune systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.