CAUSATION: Assessing causal relationships in Macroevolution
Throughout earth’s history, a myriad of factors has driven biodiversity patterns. During the lifespan of lineages, biotic and abiotic variables might act differently in shaping the diversification dynamics of organisms. Therefore...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MacDrive
Which Factors Drive Macroevolutionary Rates of Speciation an...
1M€
Cerrado
CoEvoLens
CoEvoLens: Disentangling the microevolutionary mechanisms of...
207K€
Cerrado
MTM2011-24321
ESCALAS TEMPORALES Y REDUCCION EN MODELOS DE DINAMICA DE POB...
34K€
Cerrado
PID2021-127202NB-C21
DESVELANDO LAS ECUACIONES DINAMICAS EN SISTEMAS ECO-EVOLUTIV...
190K€
Cerrado
CGL2017-86926-P
BIORREGIONALIZACION, TEORIA DE GRAFOS Y MUNDOS SIMULADOS: RE...
133K€
Cerrado
CGL2011-30274
FACTORES QUE DETERMINAN LA VARIACION ESPACIO-TEMPORAL DE LOS...
219K€
Cerrado
Información proyecto CAUSATION
Duración del proyecto: 41 meses
Fecha Inicio: 2024-03-06
Fecha Fin: 2027-08-31
Líder del proyecto
GOETEBORGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
223K€
Descripción del proyecto
Throughout earth’s history, a myriad of factors has driven biodiversity patterns. During the lifespan of lineages, biotic and abiotic variables might act differently in shaping the diversification dynamics of organisms. Therefore identifying and quantifying their relative importance is crucial for a better understanding of past and current biodiversity patterns. This is particularly relevant for complex systems involving multiple functional groups spread through different trophic levels, e.g. the system composed of browsing and grazing animals and the plants they consume. The dynamics of the whole system can be affected not only by the biological components but also by environmental factors. Recently, new methods have been proposed to directly address causal associations between time series, based on dynamic systems theory, which represents an advancement in relation to traditional correlation-based approaches. This proposal will assess the causal associations between the diversity of each component of the plant-herbivore system to have a better understanding of the mechanisms involved in the regulation of biodiversity in macroevolutionary timescales. Using the Empirical Dynamic Modelling (EDM) approach, which is a non-parametric approach specifically designed to address causality in time series, I will test the performance of this approach when using simulated and empirical macroevolutionary time series, applying it to the diversity time series of the components of the plant-herbivore system. This project will produce a critical examination of the performance of the EDM approach in this context, as well as produce direct information on the causal associations between the diversity of different groups and the influence of environmental variables on the dynamics of the whole system.