Cardiogenomics meets Artificial Intelligence: a step forward in arrhythmogenic...
Cardiogenomics meets Artificial Intelligence: a step forward in arrhythmogenic cardiomyopathy diagnosis and treatment
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by progressive cardiomyocyte loss and fibrofatty replacement, which in turn lead to the occurrence of ventricular arrhythmias and sudden cardiac death (SCD), p...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2016-75144-R
ANALISIS MOLECULAR DEL EFECTO DEL EJERCICIO EN EL DESARROLLO...
194K€
Cerrado
RISTRAD
Risk Stratification for Sudden Cardiac Death
173K€
Cerrado
GENESIS
GENetics and the Electrocardiogram for predicting Scd rISk
183K€
Cerrado
PID2019-104356RB-C41
MODELO MULTIESCALA DE PATOLOGIAS CARDIACAS Y OPTIMIZACION DE...
198K€
Cerrado
EUTRIGTREAT
Identification and therapeutic targeting of common arrhythmi...
16M€
Cerrado
DPI2015-70821-R
CARACTERIZACION DE LA MIOCARDIOPATIA ARRITMOGENICA A PARTIR...
75K€
Cerrado
Información proyecto IMPACT
Duración del proyecto: 39 meses
Fecha Inicio: 2023-06-20
Fecha Fin: 2026-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by progressive cardiomyocyte loss and fibrofatty replacement, which in turn lead to the occurrence of ventricular arrhythmias and sudden cardiac death (SCD), particularly in the young and athletes. At present, ACM is uncurable; with an incidence of 1:5000, it can be considered a major CVD disease. The subform involving only the right ventricle is the most common; the majority of its causative mutations are identified in just three desmosomal genes: PKP2, DSP, and DSG2. However, many of the identified variants in these disease genes are still of uncertain clinical significance (VUS) and thus of limited clinical utility. The overall aim of the project is to combine large-scale data from genomics, proteomics and instrumental analysis obtained from patients with data from structural and functional analyses of in vitro (3D microtissue) and in vivo (murine) models, to establish the genotype/cardiac phenotype relationship, potentially leading to a better understanding of the role and impact of known genes and epigenetic factors (ie, miRNAs) on susceptibility, clinical progression, and treatment of ACM.
The project’s outcomes will pave the way towards novel therapies for ACM.