Biotechnological therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these diseases and a lack of curative treatments. CuRE is an ambitious project aimed at identifyi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EUIN2017-88719
RED DE FORMACION INTERDISCIPLINARIA EN REGENERACION CARDIACA...
25K€
Cerrado
SUMMA
Stimulating mir 106b expression to regenerate the myocardium
150K€
Cerrado
Duración del proyecto: 67 meses
Fecha Inicio: 2018-11-28
Fecha Fin: 2024-06-30
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Biotechnological therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these diseases and a lack of curative treatments. CuRE is an ambitious project aimed at identifying novel factors (cytokines, growth factors, microRNAs) that promote cardiomyocyte proliferation and can thus be transformed into innovative therapeutics to stimulate cardiac regeneration. The Project leads from two concepts: first, that cardiac regeneration can be obtained by stimulating the endogenous capacity of cardiomyocytes to proliferate, second that effective biotherapeutics might be identified through systematic screenings both in vivo and ex vivo. In the mouse, CuRE will take advantage of two unique arrayed libraries cloned in adeno-associated virus (AAV) vectors, one corresponding to the secretome (1200 factors) and the other to the miRNAome (800 pri-miRNA genes). Both libraries will be functionally screened in mice to search for factors that enhance cardiac regeneration. This in vivo selection approach will be complemented by a series of high throughput screenings on primary cardiomyocytes ex vivo, aimed at systematically assessing the involvement of all components of the ubiquitin/proteasome pathway, the cytoskeleton and the sarcomere on cell proliferation. Cytokines and miRNAs can both be developed to become therapeutic molecules, in the form of recombinant proteins and synthetic nucleic acids, respectively. Therefore, a key aim of CuRE will be to establish procedures for their production and administration in vivo, and to assess their efficacy in both small and large animal models of myocardial damage. In addition to this translational goal, the project will entail the successful achievement of several intermediate objectives, each of which possesses intrinsic validity in terms of basic discovery and is thus expected to extend technology and knowledge in the cardiovascular field beyond state-of-the art.