Carbon Nanotube Confinement Strategies to Develop Novel Polymer Matrix Composite...
Carbon Nanotube Confinement Strategies to Develop Novel Polymer Matrix Composites
Light composite materials for load bearing applications can be made using different type reinforcements and polymer matrices. Carbon nanotubes (CNT) have been studied extensively because of their exceptional mechanical and electri...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto POCO
Líder del proyecto
FUNDACION TEKNIKER
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
2-3
| 21M€
Presupuesto del proyecto
8M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Light composite materials for load bearing applications can be made using different type reinforcements and polymer matrices. Carbon nanotubes (CNT) have been studied extensively because of their exceptional mechanical and electrical properties, yet their practical and extensive use in commercial materials is missing. The utilization of CNTs as reinforcement to design novel composites is a quite old idea. However, there is a lack of a knowledge based approach to achieve the nanostructuration level required to optimize the CNT/polymer composite performances. The main objective of POCO is to get innovative polymer composites filled with CNT in order to obtain nanostructured materials with tailor made properties. The CNT/polymer interface is, together with the CNT and the polymer, the third and most important element that will determine the final properties. Hence the chemical functionalization of CNT surfaces is of utter importance to achieve not only a proper dispersion and anchorage of the nanotubes into the polymer matrix during processing, but also to optimize the performance itself in solid state. Our approach involves the development of different CNT confinement strategies to develop novel polymer matrix nanocomposites. Several polymers have been selected as representative of thermosetting and thermoplastic materials. This ensures that the output of POCO could be applied in a wide range of applications: automotive, aeronautics, building, aerospace, wind power generation (blades), ship building, biomedicine…This project will be focused on four fundamental properties: (i) high strength for structural and mechanical components, (ii) tuneable electrical properties, (iii) low wear under fretting (low amplitude reciprocating movement) and (iv) superhydrophobicity. Multifunctionality of these materials will be an important benefit as the requirements for composite polymeric materials are quite diverse