Camera Observation and Modelling of 4D Tracer Dispersion in the Atmosphere
COMTESSA will push back the limits of our understanding of turbulence and plume dispersion in the atmosphere by bringing together full four-dimensional (space and time) observations of a (nearly) passive tracer (sulfur dioxide, SO...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2019-006009-P
Estación de monitorización de la composición y dinámica de l...
162K€
Cerrado
CGL2014-55976-R
EXPLORANDO LA FRONTERA ENTRE NUBE Y AEROSOL MEDIANTE OBSERVA...
90K€
Cerrado
JCI-2010-08144
Espectroscopía de absorción aplicada a la atmosfera, Validac...
101K€
Cerrado
ACI-UV
Aerosol and Cloud Influence on global surface UV irradiance...
45K€
Cerrado
VAP-OMI
Validation of Aerosol optical Properties and surface Irradia...
125K€
Cerrado
RASHCAST
RADAR based ASH monitoring and foreCASTing by integrating of...
201K€
Cerrado
Información proyecto COMTESSA
Duración del proyecto: 74 meses
Fecha Inicio: 2015-08-21
Fecha Fin: 2021-10-31
Líder del proyecto
HOGSKOLEN I OSTFOLD
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
COMTESSA will push back the limits of our understanding of turbulence and plume dispersion in the atmosphere by bringing together full four-dimensional (space and time) observations of a (nearly) passive tracer (sulfur dioxide, SO2), with advanced data analysis and turbulence and dispersion modelling.
Observations will be made with six cameras sensitive to ultraviolet (UV) radiation and three cameras sensitive to infrared (IR) radiation. The UV cameras will be built specifically for this project where high sensitivity and fast sampling is important. The accuracy of UV and IR retrievals will be improved by using a state-of-the art-3D radiative transfer model.
Controlled puff and plume releases of SO2 will be made from a tower, which will be observed by all cameras, yielding multiple 2D images of SO2 integrated along the line of sight. The simultaneous observations will allow - for the first time - a tomographic reconstruction of the 3D tracer concentration distribution at high space (< 1 m) and time (>10 Hz) resolution. An optical flow code will be used to determine the eddy-resolved velocity vector field of the plume. Special turbulent phenomena (e.g. plume rise) will be studied using existing SO2 sources (e.g. smelters, power plants, volcanic fumaroles).
Analysis of the novel campaign observations will deepen our understanding of turbulence and tracer dispersion in the atmosphere. For instance, for the first time we will be able to extensively measure the concentration probability density function (PDF) in a plume not only near the ground but also at high-er altitudes; quantify relative and absolute dispersion; estimate the value of the Richardson-Obukhov constant, etc. We will also use the data to evaluate state-of-the-art LES and Lagrangian dispersion models and revise their underlying parameterizations.
COMTESSA’s vision is that the project results will lead to large improvements of tracer transport in all atmospheric models.