Building Precise Molecular Architectures to Unlock Remarkable f Element Properti...
Building Precise Molecular Architectures to Unlock Remarkable f Element Properties
The astonishing properties of the f-elements have been exploited in numerous consumer technologies, despite their fundamental chemistry being poorly developed. It is now crucial to address this issue to provide the necessary insig...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LoCo
Low Coordinate Transition Metal Single Molecule Magnets
183K€
Cerrado
ASD
Atomistic Spin Dynamics Methodology and Applications
2M€
Cerrado
4FNANOMAG
Theoretical basis for the design of Lanthanide based molecul...
155K€
Cerrado
OrganoMag
Organometallic Single Molecule Magnets
183K€
Cerrado
MAT2013-44063-R
MATERIALES Y SISTEMAS DE REFRIGERACION MAGNETICA
99K€
Cerrado
COSMICS
Concepts and tools in molecular spintronics
4M€
Cerrado
Información proyecto F-ELEMENT_ARCHITECT
Duración del proyecto: 75 meses
Fecha Inicio: 2019-02-25
Fecha Fin: 2025-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The astonishing properties of the f-elements have been exploited in numerous consumer technologies, despite their fundamental chemistry being poorly developed. It is now crucial to address this issue to provide the necessary insights to develop future applications. Design criteria exist to build f-element complexes with maximised physical attributes. This adventurous proposal targets the synthesis and thorough analysis of two complementary molecular f-element architectures that 1) optimise magnetic properties and 2) stabilise unusual oxidation states.
In Part 1, we target highly axial f-element complexes that lack equatorial ligand interactions. These molecules can exhibit maximised single-molecule magnet properties, including magnetic hysteresis, a memory effect and as a prerequisite of data storage, at liquid nitrogen temperatures. This is the necessary first step towards achieving high-density molecular data storage without expensive liquid helium cooling and future commercial applications.
In Part 2, we target trigonal f-element complexes that lack axial ligand interactions. These are optimal ligand fields for the stabilisation of low oxidation states, thus we aim for rare lanthanide/actinide(II) and unprecedented lanthanide/actinide(I) complexes. These compounds are ideal candidates for unique measurements of covalency by pulsed electron paramagnetic resonance spectroscopy, which will provide textbook data that can be transferable to nuclear fuel cycles.
An ERC CoG will provide the necessary resources to build a world-leading research team that will deliver landmark synthetic results and fresh insights into f-element electronic structure, whilst opening up new chemical space for future exploitation. These findings will underpin current technologies and will facilitate the discovery of future applications, supporting key Horizon 2020 priority areas including the Flagship on Quantum Technologies, and enhancing the scientific reputation and economy of the EU.