Building emotional circuits interfacing intrinsic programs with early life expe...
Building emotional circuits interfacing intrinsic programs with early life experiences
Emotion regulation and responses to fear and stress are vital for survival and interactions with the environment. Within the brain, the amygdala governs emotional states through specialised nuclei and connectivity, controlling anx...
ver más
30/09/2029
VLAAMS INSTITUUT...
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
VIB VZW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-09-25
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto EmoDevo
Duración del proyecto: 60 meses
Fecha Inicio: 2024-09-25
Fecha Fin: 2029-09-30
Líder del proyecto
VIB VZW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Emotion regulation and responses to fear and stress are vital for survival and interactions with the environment. Within the brain, the amygdala governs emotional states through specialised nuclei and connectivity, controlling anxiety, fear reactions, and emotional learning.
In mammals, amygdala circuits mature postnatally and are influenced by mother-offspring bonding, which impairment causes early-life stress and leads to lasting consequences on anxiety. However, the molecular and cellular mechanisms underlying amygdala neuron differentiation and wiring, their reliance on intrinsic programs, potential sex differences, and impact of early-life experiences remain poorly understood.
Here, I hypothesise that the differentiation of amygdala neurons relies on transcriptional programs, which vary between sexes and are modulated by early-life stress. Building on advanced technologies and expertise for single-cell gene expression, spatial position and connectivity analyses, that I developed in my prior work, I propose to test this in the amygdalae of female and male mice, by:
1. Identifying transcriptional programs guiding neuron differentiation using single-nucleus and spatial transcriptomics.
2. Characterizing projection development and intrinsic programs using barcoded axon tracings combined with transcriptomics.
3. Determining the role of intrinsic determinants and the impact of early-life stress on projection development and function using CRISPR-Cas9-mediated gene manipulation, maternal separation, 3D axon tracings, and anxiety/emotional memory tests.
These experiments will reveal transcriptional programs governing amygdala circuit development and sex dimorphisms. They will identify amygdala neuron types sensitive to environment, potentially more prone to be affected in diseases. This research will contribute to understanding the genetic and environmental aspects of emotional dysregulation, a common feature in neuropsychiatric disorders, including anxiety disorders.