Building complex life through self organization from organ to organism
A major challenge in regenerative medicine is to create phenotypic functioning tissues by controlling cell behaviour. We particularly lack the ability to form complex tissues composed of multiple cell types and with three-dimensio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC-2009-04350
Bioactive materials for regenerative medicine
192K€
Cerrado
ATLAS
Bioengineered autonomous cell biomaterials devices for gener...
2M€
Cerrado
O2CELLS
Hybrid living bioengineered hierachical constructs with self...
157K€
Cerrado
SynchroSelf
Harnessing reversibility of peptide Self Assembly processes...
195K€
Cerrado
STUFFOR
Smart acellular scaffolds for bone repair
8K€
Cerrado
STUFFOR
Smart acellular scaffolds for bone repair
173K€
Cerrado
Información proyecto ORCHESTRATE
Duración del proyecto: 48 meses
Fecha Inicio: 2016-09-23
Fecha Fin: 2020-09-30
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A major challenge in regenerative medicine is to create phenotypic functioning tissues by controlling cell behaviour. We particularly lack the ability to form complex tissues composed of multiple cell types and with three-dimensional architecture, which are defining features of most tissues. We know that cells are conferred with the ability to choreograph their own development through self-organization. I hypothesize that if we actively promote this intrinsic capacity with new cell culture platforms, we can orchestrate self-organization to make complex tissues, organs, and even organisms with a high degree of reproducibility and in large numbers.
This proposal begins with the design and development of new cell culture platforms which will be used to test my hypothesis. Building upon our proprietary microfabrication and -fluidic technology, we will create advanced platforms that will control how cells aggregate and enable the application of biomolecules with spatial and temporal resolution to orchestrate self-organization. This technology will be transferred into three projects of increasing complexity and ambition: making in vitro models of pancreatic islets, the pituitary gland, and a mouse blastocyst. For each, we need to find the right conditions to enrich for desired phenotypes and functions, which means that we need quantitative read-outs. We will use state-of-the-art biological methods, including RNA-sequencing, to give us a holistic view of transcript expression and pathway activation, and in situ sequencing to allow us to pinpoint the expression of important phenotypic markers at a single cell level.
The anticipated outcomes of this proposal are three-fold: first, we will develop a new generation of cell culture platforms with integrated microfluidics; second, we will uncover new knowledge about how to orchestrate self-organization; and third, we will make in vitro models of pancreatic islets, pituitary glands, and mouse blastocysts.