Brownian geometry at the interface between probability theory combinatorics an...
Brownian geometry at the interface between probability theory combinatorics and mathematical physics.
The main purpose of this proposal is to explore the canonical models of planar random geometry that have been introduced in the recent years. We call this theory Brownian geometry because one of the central objects, the Brownian m...
The main purpose of this proposal is to explore the canonical models of planar random geometry that have been introduced in the recent years. We call this theory Brownian geometry because one of the central objects, the Brownian map, arises as the universal scaling limit of many discrete models of large random graphs embedded in the plane, in a way very similar to Brownian motion, which is the continuous limit of many different classes of random paths. The preceding scaling limit holds for the Gromov-Hausdorff distance on compact metric spaces. Furthermore, recent developments show that, in addition to its metric structure, the Brownian map can be equipped with a conformal structure.
Our objectives will be to combine the different approaches to develop a systematic study of the Brownian map and its variants called the Brownian disk and the Brownian plane, as well as of the associated discrete models, which are finite graphs embedded in the plane or infinite random lattices such as the uniform infinite planar triangulation. We will also study random phenomena in random geometry, starting with random walks on infinite random lattices, with the ultimate goal of constructing Brownian motion on our continuous models. A question of importance in mathematical physics is to understand the behavior of statistical physics models in random geometry. Another fundamental question is to connect the conformal structure of the Brownian map with the conformal embeddings that are known to exist for discrete planar maps.
The field of random geometry gives rise to exceptionally fruitful interactions between specialists of probability theory, theoretical physicists and mathematicians coming from other areas, in particular from combinatorics. To ensure the best chances of success for the proposed research, we will rely on the expertise of several members of the Laboratoire de Mathématiques d'Orsay, and on the unique environment of Université Paris-Sud and neighboring institutions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.