Breathing Oceans understanding the organic skin that modulates the exchange of...
Breathing Oceans understanding the organic skin that modulates the exchange of greenhouse gases between the atmosphere and the ocean
Oceans are a global reservoir of greenhouse gases, estimated to account for 20–40% of the post-industrial sink for anthropogenic carbon dioxide (CO2). However, quantifying the exchange of gases such as CO2, methane (CH4), and nitr...
ver más
31/01/2026
HWU
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
HERIOTWATT UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto BOOGIE
Duración del proyecto: 63 meses
Fecha Inicio: 2020-10-27
Fecha Fin: 2026-01-31
Líder del proyecto
HERIOTWATT UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Oceans are a global reservoir of greenhouse gases, estimated to account for 20–40% of the post-industrial sink for anthropogenic carbon dioxide (CO2). However, quantifying the exchange of gases such as CO2, methane (CH4), and nitrous oxide (N2O) between the ocean and atmosphere is a major challenge. Understanding how the ocean’s organic skin layer modulates this exchange is critical to estimate the intrinsic oceanic sinks and sources of these key greenhouse gases both now and in the future. Organic substances in the skin layer, known as surfactants, span across traditional operational definitions and are derived from multiple sources undergoing biotic and abiotic transformations along the land-ocean continuum. This proposal will investigate a land-ocean transect from South America toward the African Continent to investigate organic matter control of air-water gas exchange. Central to this work is the application of new technologies, using novel in-situ sensor platforms and advanced geochemical characterisation techniques. This new and unique data will be incorporated into hydrological and gas flux models to examine spatial and temporal effects of surfactant suppression of gas exchange – both now and in the future.