BIOS: The bio-intelligent DBTL cycle, a key enabler catalysing the industrial tr...
BIOS: The bio-intelligent DBTL cycle, a key enabler catalysing the industrial transformation towards sustainable biomanufacturing
The usage of fossil resources leading to increasing atmospheric CO2 levels and global climate change should be rapidly replaced by implementing a circular economy. Circular bioeconomy converting sustainable substrates in moderatel...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CelESTial
Industrial Cell Factories and Sustainable Bioprocessing for...
397K€
Cerrado
BIO2017-88435-R
INGENIERIA METABOLICA EN ASHBYA GOSSYPII PARA EL DESARROLLO...
200K€
Cerrado
ROBOYEAST
Robustness of Yeast Strains and Bioprocesses for Industrial...
3M€
Cerrado
BioBAA
Disruptive platform for sustainable and low cost amino acid...
3M€
Cerrado
Magyc
Integrated rational design of cell factories for high value...
111K€
Cerrado
FLEXIZYME
Construction of a FLEXIble and adaptable enZYMatic biotechno...
5M€
Cerrado
Información proyecto BIOS
Duración del proyecto: 47 meses
Fecha Inicio: 2022-10-01
Fecha Fin: 2026-09-30
Líder del proyecto
UNIVERSITY OF STUTTGART
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The usage of fossil resources leading to increasing atmospheric CO2 levels and global climate change should be rapidly replaced by implementing a circular economy. Circular bioeconomy converting sustainable substrates in moderately operating bioprocesses offers a plenitude of solutions. While synthetic biology provides a multitude of tools for strain engineering, their rapid use in hosts for optimal performance under industrial conditions is still challenging. Promising innovations are often trapped in the ‘valley-of-death’ as strain engineering faces a too complex space of putative manipulations. Novel approaches are needed to increase speed and success rate of strain and bioprocess engineering. The bio-intelligent approach, rigorously applied in BIOS, aims to accelerate and improve the conventional ‘design-build-test-learn’ (DBTL) cycle for strain and bioprocess engineering. Interdisciplinary collaboration will bridge microbiology, molecular biology, biochemical engineering with informatics, automation engineering, and mechanical engineering. Novel innovative metrics, biosensors, and bioactuators are developed for bi-directionally communication at biological-technical interfaces. Digital twins are created mimicking cellular and process levels. Integrating AI not only improves prediction quality but also enables hybrid learning, the key reason to increase speed and success rate in the novel bio-intelligent DBTL cycle (biDBTL). The power of biDBTL will be showcased by creating P. putida producer strains for terpenes, polyolefines, and methylacrylate. All are highly attractive products with a high potential for reducing anthropogenic greenhouse footprint. BIOS will open the door to a de-centralized, networked collaboration for strain and process engineering that efficiently links individual expertise for the sake of a symbiotic and rapid progress. BIOS also paves the way to de-centralized bio-manufacturing by implementing autonomous, self-controlled bioprocesses.