Biophysical mechanisms regulating early T cell signalling events
The overall aim of this project is to identify key biophysical mechanisms that control the spatial arrangement of signalling proteins and membrane lipids in the regulation of T cell receptor (TCR) activation. During an immune resp...
ver más
28/02/2017
KINGS COLLEGE LOND...
100K€
Presupuesto del proyecto: 100K€
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo FP7 notifico la concesión del proyecto
el día 2017-02-28
No tenemos la información de la convocatoria
0%
100%
100%
Características del participante
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto BIOPHIS
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The overall aim of this project is to identify key biophysical mechanisms that control the spatial arrangement of signalling proteins and membrane lipids in the regulation of T cell receptor (TCR) activation. During an immune response, T cells are activated in response to antigenic peptides in a process that requires the formation of multi-molecular signalling complexes. It is known that many T cell signalling proteins (such as the kinase Lck and the scaffold protein LAT) are not randomly distributed within the plasma membrane thus giving rise to lateral organizstion which affects signalling efficiency. However, the biophysical mechanism(s) that control protein distributions and hence the rate of molecular interactions remains poorly understood. Uniquely, I have recently developed two key technologies to unravel how protein clustering and the biophysical properties of the lipid bilayer regulate specific interactions at the molecular level. These are single-molecule, super-resolution localisation microscopy with novel statistical cluster analysis and quantification of membrane biophysical properties beyond the limit of conventional microscopy using new environmentally sensitive fluorescent probes and picosecond time-resolved excitation/detection. The research will therefore generate unique insights into the biophysical mechanisms that govern the formation of the protein clusters and complexes during early T cell signalling events. This knowledge is critical to our understanding of the molecular basis of T cell activation during the immune response and has potential applications in the development of therapeutic treatments for a range of conditions including pathogenic disease, cancer and autoimmune disease.