Biomineral inspired growth and processing of metal organic frameworks
This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisatio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAGNIFY
Decoding the Mechanisms Underlying Metal-Organic Frameworks...
1M€
Cerrado
MAT2015-65354-C2-1-R
COMPOSITES MULTIFUNCIONALES BASADOS EN REDES METALORGANICAS...
206K€
Cerrado
CTQ2012-38015
MATERIALES METALORGANICOS AVANZADOS (MOF) PARA LA ADSORCION...
151K€
Cerrado
MULTIMOF
Multifunctional Metal Organic Frameworks
173K€
Cerrado
PID2020-118564GA-I00
USO DE REDES METAL-ORGANICAS COMO RECUBRIMIENTO FUNCIONALES...
92K€
Cerrado
MNEMONIC
Magnetic Enzyme Metal Organic Framework Composites
166K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.