Increasing demand for sophisticated clinical diagnostics makes current diagnostic capacities insufficient. A potential solution lies in semi-automatic systems speeding up the diagnosis process. Artificial intelligence (AI) and mac...
Increasing demand for sophisticated clinical diagnostics makes current diagnostic capacities insufficient. A potential solution lies in semi-automatic systems speeding up the diagnosis process. Artificial intelligence (AI) and machine learning seem to be very promising approaches to the automation of diagnostic systems. However, most academic AI systems are opaque black boxes that cannot be easily understood, tested and certified. Also, academic AI solutions are often hard to reproduce, and their evaluation is insufficiently connected with clinical practice. This motivates MU and MMCI to team with two advanced partners (AP), MUG and TUB, and establish a BioMedAI infrastructure allowing close cooperation of computer science and clinical experts to develop explainable trustworthy AI solutions. Both AP possess rich experience with AI solutions for healthcare. Namely, processing large amounts of sensitive image and clinical data, interactive machine learning methods with a human-in-the-loop, and validating AI methods for healthcare. The main body of the BioMedAI project concentrates on training computer science researchers at MU and clinical experts at MMCI in the development of explainable AI methods based on high-quality medical data and validated in a clinical setting. Concretely, we propose organizing thematic workshops, virtual training with hands-on experience in developing explainable AI tools, and two summer schools. One will be oriented towards basic research in explainable AI methods for image and clinical data processing, and the other one towards the FAIR management of sensitive medical data. Furthermore, the BioMedAI project will also increase the visibility and presence of the explainable AI research in healthcare at MU and MMCI by training a PR manager responsible for presenting the research to various stakeholders, and by training the existing project management staff at MU and MMCI in writing grant applications for projects in EU and elsewhere.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.