Biomass derived Microporous Carbon Adsorbents for CO2 Capture and Storage
This Marie Curie proposal, BIOADSORB aims the development of new and low cost biomass-derived carbon adsorbents for CO2 capture using the following strategies:
(i) a new synthetic route based on hydrothermal carbonization (HTC) p...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BES-2013-065995
SINTESIS DE MATERIALES DE CARBONO MEDIANTE CARBONIZACION HID...
84K€
Cerrado
MAT2016-81732-ERC
MATERIALES COMPUESTOS DE REDES METAL ORGANICAS-LIQUIDOS IONI...
75K€
Cerrado
MAT2012-31651
SINTESIS DE MATERIALES DE CARBONO MEDIANTE CARBONIZACION HID...
64K€
Cerrado
TRANSFORMERS
Creating transformation stable microstructures through share...
183K€
Cerrado
TED2021-130621B-C41
MATERIALES NOVEDOSOS PARA SISTEMAS DE MEMBRANAS DE SEPARACIO...
230K€
Cerrado
FAST-MAP
Fast testing of multicomponent adsorption and diffusion in p...
176K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This Marie Curie proposal, BIOADSORB aims the development of new and low cost biomass-derived carbon adsorbents for CO2 capture using the following strategies:
(i) a new synthetic route based on hydrothermal carbonization (HTC) process and in situ salt templating for the efficient conversion of waste biomass into functional porous carbon materials (HTCs) for CO2 capture
(ii) a theoretical approach based on molecular simulations and density functional theory to model and understand the HTC structure along with the adsorption and transport behavior of CO2 and other gases in those structures.
(iii) An in-silico method to demonstrate the potential of HTCs for CO2 capture from real industrial streams in a cyclic separation process.
The proposed synthetic path will bring new horizons to the production of biomass-derived microporous carbon materials. The theoretical studies will demonstrate the potential of the as-synthesized materials for CO2 capture from industrial streams in a cyclic separation process. The theoretical studies will also advance the understanding of the mechanism of surface-gas interactions, gas adsorption and transport behaviour inside the complex pore matrix.