Innovating Works

DAFIA

Financiado
Biomacromolecules from municipal solid bio waste fractions and fish waste for hi...
Biomacromolecules from municipal solid bio waste fractions and fish waste for high added value applications. Municipal solids waste (MSW) are collected by municipalities and represents more than 500 kg/capita (EU-27 average), 300 million tonnes overall every year in the EU-32. Currently, approximately 50% of this volume is landfilled. Mo... Municipal solids waste (MSW) are collected by municipalities and represents more than 500 kg/capita (EU-27 average), 300 million tonnes overall every year in the EU-32. Currently, approximately 50% of this volume is landfilled. More than 1.3 million tonnes of Marine rest raw material (MRRM) are generated in Europe each year. Some countries, such as Norway and Denmark, have traditionally for animal feed. It will therefore be a challenge for the industry to develop methods to turn fish viscera and skin, currently considered as undesirable raw materials for hydrolysis and human consumption, into profitable products. DAFIA will exploit MSW and MRRM as feedstocks for high value products. The parallel exploitation of the two feedstocks may create synergies. This expertise will be utilised in process development from MSW, while at the same time, new added-value products may be identified from both feed stocks. The main objective of the DAFIA project is to explore the conversion routes of municipal solid waste (MSW), and marine rest raw-materials (MRRM) from the fish processing industries, to obtain high added value products, i.e. flame retardants, edible/barrier coatings and chemical building blocks (dicarboxylic acids and diamine) to produce polyamides and polyesters for a wide range industrial applications. Different value-chains and products will be selected and explored based on the potential commercial value and the technical feasibility including new microbial strains and processes for conversion of major feedstock fractions, enzymatic and chemical modifications of components isolated from the feedstock or produced in microbial processes. Up to four cost-effective molecule groups suitable for the final selected applications will be targeted (nucleic acids, dicarboxylic acids, diamines and gelatine), & two value-chains (MSW & MRRM) will be evaluated at pilot scale to reach TRL5. ver más
31/12/2020
6M€
Duración del proyecto: 49 meses Fecha Inicio: 2016-11-22
Fecha Fin: 2020-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-12-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 6M€
Líder del proyecto
AIMPLAS-ASOCIACIÓN DE INVESTIGACIÓN DE MATERI... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 2-3 12M