Descripción del proyecto
EL MATERIAL GENETICO PUEDE SER PROGRAMADO PARA EXPRESAR SISTEMAS QUE DETECTEN, PROCESEN (SIGUIENDO CALCULOS LOGICOS) Y RESPONDAN A (EN FORMA DE EXPRESION GENICA) DIFERENTES SEÑALES MOLECULARES, LA BIOLOGIA SINTETICA ENCARA ESTO SIGUIENDO PRINCIPIOS FUNDAMENTALES DE INGENIERIA DE SISTEMAS; ES DECIR, MEDIANTE LA COMBINACION DE MODELOS MATEMATICOS PARA CAPTURAR LA DINAMICA DE EXPRESION GENICA, EXPERIMENTOS PARA MONITORIZAR DE MANERA CUANTITATIVA LAS CARACTERISTICAS DEL SISTEMA (RETROALIMENTANDO EL PROCESO DE DISEÑO) Y LA ESTANDARIZACION DE PARTES GENETICAS PARA COMPOSICION MODULAR, CIERTAMENTE, EL DISEÑO INICIAL DE CIRCUITOS SE BASA EN MODELOS DE REGULACION INCOMPLETOS/SIMPLISTAS ESTABLECIDOS POR DESARROLLOS PREVIOS DE BIOLOGIA MOLECULAR Y DE SISTEMAS, UNA VEZ DISEÑADO Y CARACTERIZADO PARA SU FUNCIONALIDAD PRINCIPAL, UN CIRCUITO SINTETICO AUN PRESENTA MULTIPLES INTERROGANTES, GENERALMENTE IGNORADOS, POR EJEMPLO, ¿LOS MODELOS UTILIZADOS PARA GUIAR EL DISEÑO SON LO SUFICIENTEMENTE PREDICTIVOS?, ¿EL COMPORTAMIENTO ES CONSISTENTE A NIVEL DE POBLACION Y DE UNA UNICA CELULA?, O ¿CUAL ES LA ESTABILIDAD EVOLUTIVA DE UNA CONSTRUCCION SINTETICA EN UN ORGANISMO? CREEMOS QUE LA RESOLUCION DE ESTAS PREGUNTAS CONDUCIRA A UNA RESINTESIS EN LA COMPRENSION DE LA FUNCION DEL CIRCUITO, TRABAJO PIONERO EN BIOLOGIA SINTETICA SE CENTRO EN LA REGULACION TRANSCRIPCIONAL, LO QUE LLEVO A IMPLEMENTACIONES GENETICAS DE PUERTAS LOGICAS, BIESTABLES Y OSCILADORES, EN LOS ULTIMOS AÑOS, SIN EMBARGO, EL ARN SE HA EXPLOTADO PARA DISEÑAR PROGRAMAS DE EXPRESION GENICA QUE SE EJECUTAN DE FORMA ROBUSTA IN VIVO, GRACIAS A SU VERSATILIDAD FUNCIONAL Y DISEÑABILIDAD A NIVEL DE NUCLEOTIDO, PRUEBA DE ESTA IDONEIDAD SON NUEVOS MECANISMOS DE CONTROL Y CIRCUITOS FUNCIONALES CON MOLECULAS DE ARN QUIMERICAS, EN ESTE PROYECTO, NOS CENTRAREMOS EN RIBORREGULADORES DE INICIACION DE LA TRADUCCION, ES DECIR, PEQUEÑAS MOLECULAS DE ARN CAPACES DE INTERACTUAR DE FORMA MUY ESPECIFICA CON LA REGION 5' NO TRADUCIDA DE UN ARN MENSAJERO PARA REGULAR LA UNION DE RIBOSOMAS, EN PRIMER LUGAR, DESARROLLAREMOS UN NUEVO MODELO TERMODINAMICO DE LAS INTERACCIONES ARN-ARN IN VIVO SIGUIENDO UNA DESCRIPCION ENERGETICA DETALLADA, ADOPTAREMOS UN ESQUEMA FUERA DEL EQUILIBRIO Y COMBINAREMOS CALCULOS ESTRUCTURALES CON ECUACIONES DIFERENCIALES, ESTO SERA INSTRUMENTAL PARA RECONOCER PROCESOS DINAMICOS DE REPLEGAMIENTO INTERMOLECULAR CON IMPACTO EN EXPRESION, ADEMAS, ANALIZAREMOS EL COMPORTAMIENTO ESTOCASTICO DE LA RIBORREGULACION MEDIANTE LA MONITORIZACION DE LA EXPRESION A NIVEL DE CELULA UNICA, VINCULAREMOS LAS CARACTERISTICAS ESTRUCTURALES DEL ARN CON EL GRADO DE VARIABILIDAD ENTRE CELULAS, DESARROLLANDO MODELOS MATEMATICOS CAPACES DE PREDECIR DICHOS PATRONES, FINALMENTE, ESTUDIAREMOS EL RANGO DE OPERABILIDAD DE UN CIRCUITO BASADO EN ARN PREVIAMENTE DISEÑADO, UTILIZAREMOS UN CIRCUITO CAPAZ DE REALIZAR OPERACIONES LOGICAS, PARA ESO, ESTUDIAREMOS EL COMPORTAMIENTO DINAMICO EN DIFERENTES CONDICIONES AMBIENTALES, ESTUDIAREMOS EL IMPACTO SOBRE EL CRECIMIENTO DE LA EXPRESION HETEROLOGA DE ARN Y ANALIZAREMOS LA ESTABILIDAD EVOLUTIVA DEL CIRCUITO REALIZANDO EVOLUCION EXPERIMENTAL, LA COMPRENSION DEL COMPORTAMIENTO DINAMICO EXTENDIDO DE SISTEMAS GENETICOS SINTETICOS FACILITA EN ULTIMA INSTANCIA EL DESARROLLO DE PRINCIPIOS DE DISEÑO EN BIOLOGIA, EN SUMA, EL IMPACTO EN CIENCIA BASICA DE ARN Y BIOLOGIA SINTETICA, ASI COMO LAS APLICACIONES ACTUALES Y EN PERSPECTIVA, HACEN ESTA INVESTIGACION MULTIDISCIPLINAR OPORTUNA Y PERTINENTE, BIOLOGÍA DE SISTEMAS\BIOLOGÍA SINTÉTICA