BIoGeochemistry in a high CO2 World BIGCOW lessons from the Ocean Anoxic Even...
BIoGeochemistry in a high CO2 World BIGCOW lessons from the Ocean Anoxic Events
Model predictions are regularly made about the state of marine ecosystems and carbon cycle in a future high CO2 world. But while increased ocean stratification means lower future biological export production in some models, in oth...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DEstiNi
Investigation of the Dynamic Estuarine and Marine cycling of...
192K€
Cerrado
CTM2013-43006-P
EVALUACION INTEGRADA DEL PAPEL DEL CICLO DE CARBONO MARINO E...
154K€
Cerrado
PALEOCARB
Role of the marine carbon cycle in the climate system
270K€
Cerrado
PALEOGENIE
PAst Links in the Evolution of Ocean s Global ENvIronment an...
2M€
Cerrado
SCrIPT
Stable Chromium Isotopes as a Productivity Tracer
2M€
Cerrado
SO-Link
Southern Indian Ocean climate evolution and its global linka...
212K€
Cerrado
Información proyecto BIGCOW
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
175K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Model predictions are regularly made about the state of marine ecosystems and carbon cycle in a future high CO2 world. But while increased ocean stratification means lower future biological export production in some models, in others, higher temperatures inducing faster rates of biological activity drive completely the opposite response. Rates of nitrogen fixation may increase in a warmer ocean and support higher production, but at the same time, loss rates of nitrate will increase as oxygen minimum zones expand and intensify. The cycling of iron also plays a critical role in controlling marine productivity and may limit nitrogen fixation. Yet, while iron bio-availability will be affected by changes in temperature, acidity, and oxygenation, no current model accounts for how iron solubility will respond to future ocean geochemical environmental changes. How can we increase confidence in predicting the intertwined response of nutrient and carbon cycles in a high CO2 world? The geological record contains case studies into the range of possible Earth system behaviours, states, and strengths of feedbacks. Of particularly interest here are the Ocean Anoxic Events of the Mesozoic, which were associated with profound global-scale perturbations of climate and marine biogeochemical cycles, high plankton turnover rates and biological extinction, and the burial of economically important quantities of organic carbon in black shales. They have relevance to future marine biological consequences of warming and acidification, and the spread oxygen minimum zones. Here we propose the first model of marine iron cycle applicable to a high CO2 world, the first analysis of the dynamical interaction of all three nutrient cycles (P, N, Fe), CO2, and climate associated with the onset of Ocean Anoxic Event like conditions, and the first explicit test of the role of iron in triggering an Ocean Anoxic Event.