BIOCONVERSION SOSTENIBLE DE CO2 MEDIANTE HERRAMIENTAS ELECTROQUIMICA MICROBIANAS...
BIOCONVERSION SOSTENIBLE DE CO2 MEDIANTE HERRAMIENTAS ELECTROQUIMICA MICROBIANAS UTILIZANDO ELECTRODOS FLUIDIZADOS.
THIS REMARKABLE CAPACITY OF ELECTROACTIVE BACTERIA TO EXCHANGE ELECTRONS WITH ELECTRICALLY CONDUCTIVE SOLID MATERIAL HAS BEEN INVESTIGATED FROM A VARIETY OF PERSPECTIVES DURING THE LAST DECADES AND HAS GIVEN RISE TO THE SO-CALLED...
ver más
UNIVERSIDAD DE ALCALÁ
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores846
Financiación
concedida
El organismo AGENCIA ESTATAL DE INVESTIGACIÓN notifico la concesión del proyecto
el día 2021-01-01
No tenemos la información de la convocatoria
0%
100%
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLEC2021-007802
GAIA: Bioelectroconversion of orGAnic waste streams and CO2...
214K€
Cerrado
FJC2021-047260-I
Microbial electrochemical technologies for biofuels and bioe...
65K€
Cerrado
BES.WIRE
Bioelectrochemical Systems with Immobilized Redox Mediators...
231K€
Cerrado
PID2020-119403RB-C21
CONVERSION DE BIORRESIDUOS EN HIDROGENO Y ACEITES MICROBIANO...
145K€
Cerrado
UNCA15-CE-3476
Planta integrada de nuevas tecnologías de Ozonización y Gasi...
295K€
Cerrado
PID2020-117805RB-I00
PROCESOS DE BIOREFINERIA SOSTENIBLE PARA LA PRODUCCION DE BI...
271K€
Cerrado
Información proyecto TED2021-132870B-I00
Líder del proyecto
UNIVERSIDAD DE ALCALÁ
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores846
Presupuesto del proyecto
150K€
Descripción del proyecto
THIS REMARKABLE CAPACITY OF ELECTROACTIVE BACTERIA TO EXCHANGE ELECTRONS WITH ELECTRICALLY CONDUCTIVE SOLID MATERIAL HAS BEEN INVESTIGATED FROM A VARIETY OF PERSPECTIVES DURING THE LAST DECADES AND HAS GIVEN RISE TO THE SO-CALLED MICROBIAL ELECTROCHEMICAL TECHNOLOGIES (MET). AMONG MET, MICROBIAL ELECTROSYNTHESIS (MES) ENABLES THE GENERATION OF DROP-IN CHEMICALS FROM CO2. THEREFORE, IT COULD CONTRIBUTE TO THE OVERALL SUSTAINABILITY OF INTENSIVE CO2 EMITTERS AND TO REPLACING FOSSIL CARBON-DERIVED PLATFORM CHEMICALS.MICROBIAL ELECTROCHEMICAL FLUIDIZED BED REACTOR (ME-FBR) IS A PROMISING NEW SUSTAINABLE TECHNOLOGY BASED ON MET THAT CAN OVERCOME THE TECHNICAL AND NON-TECHNICAL OBSTACLES FROM BIOELECTROSYNTHESIS. ME-FBR HAS A TUBULAR GEOMETRY THAT IS EASY TO CONSTRUCT AND APPLY AT ANY SCALE. AS PREVIOUSLY DESCRIBED IN THE METFLUID PROPOSAL (SEED OF THIS BIOCO2MET PROPOSAL), THE FLUIDIZATION OF THE PARTICLES ELIMINATES CLOGGING THAT CAN OCCUR WITH A STATIC SOLID ELECTRODE. OUR PROJECT AIMS TO DESIGN, CONSTRUCT AND OPERATE A ME-FBR (TRL 4) TO CARRY OUT A MICROBIAL ELECTROSYNTHESIS PROCESS FOR THE CONVERSION OF CO2 INTO TWO DIFFERENT TARGET ADDED-VALUE PRODUCTS SUCH AS VFAS (ACETIC, PROPIONIC, AND BUTYRIC ACIDS), ALCOHOLS (ETHANOL AND BUTANOL). FURTHERMORE, WE EXPLORE A 3D VISION SYSTEM TO MONITOR THE PERFORMANCE BIOREACTOR OPERATION ON REAL TIME.SPECIFIC OBJECTIVESOBJECTIVE 1 (PI ABRAHAM ESTEVE): TO DESIGN, CONSTRUCT AND OPERATE A ME-FBR TO PRODUCE VFAS AND ALCOHOLS FROM CO2 USING A POTENTIOSTAT TO POISE THE ELECTRODEOBJECTIVE 2 (PI JUANMA ORTIZ): NEW STRATEGIES FOR CONVERTING CHEMICAL ENERGY INTO ELECTRICAL ENERGY FOR CONVERTING CO2 INTO FORMATE BY MEANS OF ELECTROCHEMICAL MICROBIOLOGY AND REDOX MEDIATORS. OBJECTIVE 3 (PI ABRAHAM ESTEVE: TO ASSESS THE SUSTAINABILITY OF THE PROCESS USING A LIFE CYCLE ANALYSIS. OBJECTIVE 4 (PI JUANMA ORTIZ): TO USE A BASIC 3D VISION SYSTEM (RGB AND/OR INFRARED CAMERAS) TO MONITOR ME-FBR PERFORMANCE OBJECTIVE 5 (PI ABRAHAM ESTEVE): TO DISSEMINATE AND COMMUNICATE THE OUTCOME OF BIOCO2MET TO THE SCIENTIFIC COMMUNITY AND THE TARGET STAKEHOLDERS OPERATIONALLY, THE ACTIVITIES WILL BE ORGANIZED IN WORK PACKAGES THAT WILL BE CARRIED OUT BY MEMBERS OF THE RESEARCH AND WORK TEAM AT UAH. BOTH IP WILL BE DEVOTED TO MANAGE THE PROJECT ACTIVITIES, ELABORATION OF REPORTS, AND ESTABLISH A PROPER COOPERATION ENVIRONMENT AMONG THE MEMBERS OF THE TEAM (WP1). THE EMPHASIS OF BIOCO2MET DURING THE INITIAL PERIOD (WP2) WILL BE THE DESIGN, CONSTRUCTION AND OPERATION OF A ME-FBR FOR BIOCONVERSION OF CO2 INTO VFAS AND ALCOHOLS USING A POTENTIOSTAT TO SUPPLY ELECTRICAL CURRENT IN THE PROCESS. THE NEXT STEP WILL BE THE VALIDATION OF THE CONCEPT (WP3) WHERE ELECTRONS ARE DONATED FROM A REDUCED REDOX INTERMEDIATE WHICH IS PREVIOUSLY CHARGED USING ELECTROACTIVE METABOLISM OF POLLUTANTS. FURTHERMORE, ME-FBR PERFORMANCE WILL BE MONITORED USING A 3D VISION SYSTEM (RGB AND/OR INFRARED CAMERAS) INCLUDING THE DEVELOPMENT OF ALGORYTHMS TO ESTABLISH PREDICIONS BASED ON ARTIFICIAL INTELLIGENCE (WP4). ADDITIONALLY, A COMPLETE LIFE CYCLE ASSESSMENT (LCA) WILL BE PERFORMED IN ORDER TO ANALYSE THE IMPACT AND SUSTAINABILITY OF OUR TECHNOLOGY (WP5). FINALLY, THE OUTPUT OF THE PROJECT WILL BE DISSEMINATED BY AN EXPERT SCIENTIFIC COMMUNICATOR IN WP6 LECTROMICROBIOLOGIA\BATERIA REDOX\3D VISION\BIORREACTOR DE LECHO FLUIDIZADO\BIOELECTROSYNTHESIS\ELIMINACION DE CO2