Several combinatorial and discrete optimization problems can be modelled using a quadratic objective function subject to binary constraints; such models are called binary quadratic problems (BQP). These problems are hard to solve...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QIP
Towards a Quantitative Theory of Integer Programming
2M€
Cerrado
PID2021-122344NB-I00
NUEVAS TENDENCIAS EN OPTIMIZACION COMBINATORIA PARA LA GESTI...
106K€
Cerrado
EUSACOU
European South American network on Combinatorial Optimizatio...
56K€
Cerrado
MTM2016-74877-P
NUEVOS ALGORITMOS EFICIENTES PARA LA RESOLUCION DE PROBLEMAS...
27K€
Cerrado
ICOPT
Fundamental Problems at the Interface of Combinatorial Optim...
1M€
Cerrado
RTI2018-097580-B-I00
MODELIZACION Y OPTIMIZACION DE PROBLEMAS ESTRUCTURADOS DE GR...
83K€
Cerrado
Información proyecto BQOA
Líder del proyecto
AVIGNON UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
194K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Several combinatorial and discrete optimization problems can be modelled using a quadratic objective function subject to binary constraints; such models are called binary quadratic problems (BQP). These problems are hard to solve in general thus, relaxations are used to find bounds and near optimal solutions. Quadratic programming problems with binary variables arise in many settings, including engineering, finance, transportation, and location problems. The study of linear programming problems with binary variables has been wide ranging, covering many applications and developing many theoretical facets. On the other hand, finding global solutions or even good quality bounds for quadratic programming problems with binary variables has been regarded as a very challenging area of research due to the hardness and complexity of the problem. For the proposed research, we intend to develop new optimization schemes for constrained binary quadratic programming problems by utilizing semidefinite and linear programming techniques. Based on these schemes, we investigate developing efficient algorithms to find global optimal solutions for three challenging applications of binary quadratic programming. In particular, we consider applications in traffic network planning, location and network planning, and satellite communication network planning problems.