We propose precision lattice QCD computations aiding the search for new physics beyond the Standard Model. In particular, we will address currently observed anomalies such as those displayed in the anomalous magnetic moment of the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NEWPHYSICSHPC
Unraveling new physics on high performance computers
978K€
Cerrado
LATTICE FLAVOUR QCD
Flavour physics from lattice QCD at the physical point
100K€
Cerrado
LattHadronic
Precise hadronic corrections with lattice QCD in the search...
169K€
Cerrado
FPA2008-01732
FENOMENOLOGIA DE PARTICULAS ELEMENTALES Y SIMULACIONES DINAM...
102K€
Cerrado
RYC-2010-05752
Phenomenology of the Standard Model and its extensions using...
192K€
Cerrado
COLLINEAR-FRACTURE
Towards loop splitting amplitudes and collinear factorisatio...
181K€
Cerrado
Información proyecto BCFS
Duración del proyecto: 25 meses
Fecha Inicio: 2020-08-03
Fecha Fin: 2022-09-30
Líder del proyecto
SYDDANSK UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We propose precision lattice QCD computations aiding the search for new physics beyond the Standard Model. In particular, we will address currently observed anomalies such as those displayed in the anomalous magnetic moment of the muon and lepton flavour universality tests in semi-leptonic B meson decays. We will further supplement searches for new physics through the computation of hadronic inputs, which combined with experimental results allow the determination of elements of the Cabibbo-Kobayashi-Maskawa matrix, thereby providing precision tests of the standard model.
We will compute a large set of hadronic form factors of semi-leptonic B(s) and D(s) meson decays including pseudo-scalar and vector final
states. State-of-the-art computations of these have two major shortcomings: the use of effective theories for the b-quark, and the treatment of vector final states as QCD-stable particles. We will eliminate the former of these by utilising very fine lattices which allow for the direct simulation of the b-quark near its physical mass. The latter will be addressed by merging specialist expertise in the computation of such form factors with that of hadronic scattering processes. This will result in the first calculation that takes the unstable nature of the vector final states in QCD into account. This is of paramount importance in order to address the observed anomalies in the B to D* and B to K* decays. We will compute the full basis of possible currents thereby providing standard model predictions as well as inputs for tests of beyond the standard model theories. Further, we will use the approach of massive QED in lattice QCD computations to provide an independent cross check of the electromagnetic corrections to the hadronic vacuum polarisation. This work will provide vital inputs in searches for physics beyond the standard model which are needed to fully exploit large ongoing experiments at the Large Hadron Collider and at facilities in Japan and the US.