Better Languages for Statistics foundations for non parametric probabilistic pr...
Better Languages for Statistics foundations for non parametric probabilistic programming
Probabilistic programming is a powerful method for Bayesian statistical modelling, particularly where the sample space is complex or unbounded (non-parametric). This is because the statistical model can be described clearly in a w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto BLaSt
Duración del proyecto: 67 meses
Fecha Inicio: 2020-02-26
Fecha Fin: 2025-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Probabilistic programming is a powerful method for Bayesian statistical modelling, particularly where the sample space is complex or unbounded (non-parametric). This is because the statistical model can be described clearly in a way that is precise but separate from inference algorithms. It accommodates complex models in such a way that outcomes are still explainable.
The objective of the proposed research is to develop a semantic foundation for probabilistic programming that properly explains the non-parametric aspects, particularly the symmetries that arise there. There are three ultimate goals:
* to propose new probabilistic programming languages: better languages for statistics;
* to devise new general inference methods for probabilistic programs;
* to build new foundations for probability.
The method is to build on advances on exploiting symmetries in traditional programming lan- guage semantics, by combining this with recent successes in formal semantics and verification for probabilistic programming.