Innovating Works

BLaSt

Financiado
Better Languages for Statistics foundations for non parametric probabilistic pr...
Probabilistic programming is a powerful method for Bayesian statistical modelling, particularly where the sample space is complex or unbounded (non-parametric). This is because the statistical model can be described clearly in a w... Probabilistic programming is a powerful method for Bayesian statistical modelling, particularly where the sample space is complex or unbounded (non-parametric). This is because the statistical model can be described clearly in a way that is precise but separate from inference algorithms. It accommodates complex models in such a way that outcomes are still explainable. The objective of the proposed research is to develop a semantic foundation for probabilistic programming that properly explains the non-parametric aspects, particularly the symmetries that arise there. There are three ultimate goals: * to propose new probabilistic programming languages: better languages for statistics; * to devise new general inference methods for probabilistic programs; * to build new foundations for probability. The method is to build on advances on exploiting symmetries in traditional programming lan- guage semantics, by combining this with recent successes in formal semantics and verification for probabilistic programming. ver más
30/09/2025
2M€
Duración del proyecto: 67 meses Fecha Inicio: 2020-02-26
Fecha Fin: 2025-09-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-02-26
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
THE CHANCELLOR MASTERS AND SCHOLARS OF THE UN... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5