Bayesian Gaussian Processes. Or: How I Learned to Stop Worrying and Love Nonline...
Bayesian Gaussian Processes. Or: How I Learned to Stop Worrying and Love Nonlinear Social Science
Nonlinearity is ubiquitous in the social sciences. In cross-sectional research, nonlinearity naturally follows from the fact that variables often depend on human perception. The tendency to share fake news, for example, depends in...
Nonlinearity is ubiquitous in the social sciences. In cross-sectional research, nonlinearity naturally follows from the fact that variables often depend on human perception. The tendency to share fake news, for example, depends in a complex nonlinear manner on peoples’ personality and political preferences. In longitudinal research, nonlinearity follows from the fact that temporal social processes are nonstationary by nature. For instance, stressful life events (e.g., unemployment, pandemic) have a complex nonlinear impact on well-being over time. To study these nonlinear phenomena, much more data are needed than in linear analyses. Therefore, researchers increasingly rely on technological innovations to collect rich data, such as panel data via online surveys, experience sampling data via mobile apps, or temporal social network data using digital communication (e.g., email). In addition, prior information (e.g., from experts) is often available to inform us about plausible nonlinear shapes. A crucial problem is however that statistical approaches for learning nonlinearity still heavily rely on old-fashioned techniques which can only model simple (curvilinear) effects and are unable to include external prior information. Our understanding about nonlinear phenomena therefore remains limited. This project aims to resolve these shortcomings by developing cutting-edge methods for nonlinear social science using Bayesian Gaussian processes. With this nonparametric methodology, we can learn complex nonlinear shapes, add prior knowledge, and test nonlinear theories. Implementation in user-friendly software will ensure general utilization. Tailor-made extensions will be developed for cross-sectional data, panel data, experience sampling data, and temporal social network data. After this project, we will be able to truly understand complex nonlinear mechanisms, to learn how these unfold over time, and to make accurate predictions (e.g., of well-being after life events).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.