Today, energy production and transport are evolving fast to meet challenging environmental targets and growing demand. The Achilles’ heel is energy storage, which is incapable of providing both low cost and high-performance soluti...
Today, energy production and transport are evolving fast to meet challenging environmental targets and growing demand. The Achilles’ heel is energy storage, which is incapable of providing both low cost and high-performance solutions. The answer is not a simple evolution of existing batteries but disruptive technologies that must be discovered fast.
The BIG-MAP vision is to develop a modular, closed-loop infrastructure and methodology to bridge physical insights and data-driven approaches to accelerate the discovery of sustainable battery chemistries and technologies. BIG-MAP’s strategy is to cohesively integrate machine learning, computer simulations and AI-orchestrated experiments and synthesis to accelerate battery materials discovery and optimization. The project will be a lever to create the infrastructural backbone of a versatile and chemistry-neutral European Materials Acceleration Platform, capable of reaching a 10-fold increase in the rate of discovery of novel battery materials and interfaces.
To succeed in this unprecedented international initiative, the BIG-MAP consortium covers the entire battery discovery value chain from atoms to battery cells, totaling 34 partners from 15 countries and spanning world-leading academic experts, research laboratories and industry leaders. The consortium is a joint European battery community effort, and the large-scale European Research Initiative BATTERY 2030+ stands united behind the BIG-MAP consortium. In addition to 13 core partners from BATTERY 2030+, the BIG-MAP consortium includes 21 leading European partners with complementary battery skills and essential competences from critical research areas such as quantum machine learning, deep learning and autonomous synthesis robotics. All partners will work to create an innovative methodology relying on unique competences and cross-cutting initiatives to deliver a shared infrastructure and 12 key demonstrators to showcase the value of AI-orchestrated materials discovery.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.