Innovating Works

NextBase

Financiado
Base metal-catalytic cross-coupling methodologies towards sustainability
"Catalysis is today exploited for preparing ca. 90% of chemical and pharmaceutical products. Use of catalysts allows for efficient chemical transformations, limiting the energy consumption and improving selectivity and atom econom... "Catalysis is today exploited for preparing ca. 90% of chemical and pharmaceutical products. Use of catalysts allows for efficient chemical transformations, limiting the energy consumption and improving selectivity and atom economy. However, a large number of catalytic systems rely on noble metals (e.g., Pd, Pt, Rh, Ir, Au), with associated sustainability and toxicity issues. Indeed, all these metals are undergoing strong price fluctuations and will face supply limitations in the future. Moreover, given the toxicity of most precious metals, the tolerated threshold in fine chemicals and APIs is very low, with associated purification costs (solvents, energy, generation of waste). For these reasons, replacement of noble metals with the cheaper and generally less toxic 1st row transition metals (TMs) - such as Mn, Fe, Co, Ni, Cu - is becoming a compelling goal for chemists, as well as a need for society. However, this goal also represents a tremendous challenge, as the typical reactivity of 2nd and 3rd row TMs cannot be easily transferred to 1st row TMs, due to their different electronic structure: the so-called ""base metals"" tend to form high spin complexes and to engage in single electron transfer rather than in the multielectron redox steps typical of noble metals. NextBase is an intersectoral consortium of research groups with a strong expertise in catalysis, who will join forces to take the challenge of noble metal replacement in cross-coupling reactions - a class of transformations of high industrial importance for the production of fine chemicals and APIs. Synergies and complementary types of expertise within the DN will be exploited (i) to harness the reactivity of 1st row TM for several types of cross-coupling, which will be also applied to industrially relevant targets, and (ii) to train PhD students aware of the importance of sustainability issues and expert in the use and combination of sustainable catalytic methodologies." ver más
30/09/2027
2M€
Duración del proyecto: 51 meses Fecha Inicio: 2023-06-29
Fecha Fin: 2027-09-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-06-29
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITA DEGLI STUDI DI MILANO No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5