Quantum Chromodynamics (QCD) undergoes a crossover from the hadronic phase at low temperatures T to a quark-gluon plasma (QGP) phase at high T. This crossover and properties of the QGP phase are important for understanding the evo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HIC-LHC-2008
Theory and phenomenology of the heavy ion collision program...
45K€
Cerrado
QCDENSE
Precision tools for high energy QCD scattering at the LHC an...
100K€
Cerrado
JQ4LHC
Jet quenching for heavy ion collisions at the LHC
197K€
Cerrado
ExHolo
Holography under extreme conditions
191K€
Cerrado
HIEIC
Heavy ion collisions collectivity and precision in saturati...
294K€
Cerrado
CSScanJet
Colliding System Size Dependence of Jet Quenching
211K€
Cerrado
Información proyecto XQCDBaryons
Duración del proyecto: 33 meses
Fecha Inicio: 2017-03-09
Fecha Fin: 2019-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum Chromodynamics (QCD) undergoes a crossover from the hadronic phase at low temperatures T to a quark-gluon plasma (QGP) phase at high T. This crossover and properties of the QGP phase are important for understanding the evolution of the early universe and are being studied by major Heavy Ion Collision (HIC) experiments at RHIC and LHC. The transition temperature and many QGP properties have been determined by Lattice QCD simulations. However, connecting these to experimental remnants of QGP fireballs produced at HICs is not straightforward. Thermal effects will modify the properties of the excitations (mesons and baryons) within the medium. We propose to investigate these in-medium changes using lattice QCD methods, shedding light onto the dynamics of HIC fireballs.
Low temperature, high chemical potential phases are another region of the QCD phase diagram, interesting, e.g., for the physics of neutron stars. While this region is not accessible to numerical methods at present, we address the situation of an isospin chemical potential mu_I on the lattice, which also describes important aspects of neutron star cores. We propose to determine baryonic excitations for non-zero mu_I, which can provide a deeper understanding of possible quark matter cores in neutron stars.