Barcoding gene expression dynamics at single molecule resolution
Gene expression is an inherently stochastic process. Random expression bursts cause tremendous cell-to-cell variations in mRNA and protein levels. The consequences are beneficial in some instances, e.g., in cell differentiation, a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-094017-B-I00
METODOS PARA RELACIONAR DATOS GENOMICOS Y TRANSCRIPTOMICS CO...
339K€
Cerrado
BURSTREG
Single molecule visualization of transcription dynamics to u...
2M€
Cerrado
RYC-2015-17246
Transcription elongation, a coordinated process with pre-mRN...
309K€
Cerrado
PRE2019-090967
Topología del ADN en la dinámica del genoma
98K€
Cerrado
BFU2011-23921
CAMBIO GENOMICO E INNOVACION EN EL SISTEMA NERVIOSO DE VERTE...
371K€
Cerrado
RegRNA
Mechanistic principles of regulation by small RNAs
2M€
Cerrado
Información proyecto DYNOME
Duración del proyecto: 66 meses
Fecha Inicio: 2020-01-22
Fecha Fin: 2025-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Gene expression is an inherently stochastic process. Random expression bursts cause tremendous cell-to-cell variations in mRNA and protein levels. The consequences are beneficial in some instances, e.g., in cell differentiation, and harmful in others, e.g., in bacterial drug tolerance. A key interest in biology is therefore to decipher the kinetics that characterise this noise. What is the distribution of transcription rates in a cell population? Are gene expression dynamics heritable? Do gene networks communicate via the ‘Morse code’ of expression burst? Detailed answers to these questions are pending due to insufficient methods to temporally resolve gene expression noise at single-molecule resolution. A ‘transparent cell’ is needed for which transcription and translation kinetics is accessible for many genes in parallel. DYNOME is my answer to this challenge. DYNOME combines (i) a super-resolution detect-and-bleach strategy, (ii) multi-colour barcoding to monitor up to six genes in parallel, (iii) a lineage tracking tool, and (iv), lab-on-a-chip bioreactors to steer growth conditions. Using this innovative bio-dynamics platform, I will monitor gene expression dynamics at the single-molecule level for many genes in single cells at the same time over many generations. My targets for DYNOME are stochastic decision-making events in bacteria and in eukaryotic cells that include (i) a stochastic phenotype switch (B. subtilis), (ii) the development of non-genetic drug resistance (E. coli), and (iii) cell cycle control (S. cerevisiae). The results will reach far beyond these organisms. Decrypting cell-individuality with kinetic models will be a breakthrough both in basic and in applied sciences with impacts on the development of drugs against bacterial invasions, the design of new and useful functionalities in cells, and on our understanding of how biological variability arises from the laws of statistical physics.