Bacterial Wiring for Energy Conversion and Remediation
The aim of the project is to develop a new paradigm for the simultaneous cogeneration of energy and bioremediation using electro-active bacteria. A new nano-structured transducer that efficiently connects to these bacteria will be...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ELECTROTALK
Starting an electrical conversation between microorganisms a...
1M€
Cerrado
PRE2019-087607
REACTORES ELECTROQUIMICOS MICROBIANOS BASADOS EN ELECTRODOS...
98K€
Cerrado
EA-BIOFILMS
Electroactive Biofilms for Microbial Fuel Cells and Biosenso...
100K€
Cerrado
PID2021-126799NB-I00
RACIONALIZACION DE LOS FACTORES QUE REGULAN LA TRANSFERENCIA...
85K€
Cerrado
BES-2016-078815
BIOELECTROCATALISIS CON HIDROGENASAS: PRODUCCION FOTOBIOELEC...
93K€
Cerrado
DEMED
Directed Evolution of Metalloenzymes through Electrochemical...
163K€
Cerrado
Información proyecto BACWIRE
Líder del proyecto
UNIVERSIDAD DE ALICANTE
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores1051
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of the project is to develop a new paradigm for the simultaneous cogeneration of energy and bioremediation using electro-active bacteria. A new nano-structured transducer that efficiently connects to these bacteria will be developed, aiming to the production of devices with superior performance across a range of applications including microbial fuel cells, whole cell biosensors and bioreactors. Elucidation of mechanisms by which bacteria transport electrons to solid electrodes is crucial. In this way, well-defined surfaces of single crystals and multilayered gold deposits on quartz elements will be used to resolve the interfacial electrochemistry of both, bacteria and isolated bacterial surface redox molecules. The spatial distribution of cytochromes in the cell surface will be determined by AFM and those involved in the electric connection to electrodes will be studied in detail. Nanoparticle-containing molecular bridges will be designed and constructed to connect electro-active bacteria to the electrode. Afterwards, tethered bacterial biofilms will be used in the development of technological application including reactors for the simultaneous cleaning of wastewater and the generation of clean energy.