Bacteria Intrinsically Orchestrated with Designed Enzymes for sinerGistic Rate-A...
Bacteria Intrinsically Orchestrated with Designed Enzymes for sinerGistic Rate-Accelerated plastic Degradation Efficiency
Plastics are one of the most widely used materials, with a wide variety of applications across all sectors of the economy. Its production is estimated to be around 360 million tonnes, and thus synthetic polymer is poorly biodegrad...
Plastics are one of the most widely used materials, with a wide variety of applications across all sectors of the economy. Its production is estimated to be around 360 million tonnes, and thus synthetic polymer is poorly biodegradable. Plastic life cycle is responsible for greenhouse gas emissions, contributing to climate change, plastic waste has been found in every ecosystem, are broken down into small pieces, microplastics, which can have a negative impact on organisms, and altogether causing an unprecedented ecological crisis.
We aim to tackle this problem through Bacteria Intrinsically Orchestrated with Designed Enzymes for sinerGistic Rate-Accelerated plastic Degradation Efficiency (BIO DEGRADE) project, using a novel application of biotechnological-based approaches to synergistically increase the efficiency limits of multi-enzymatic solutions. The project will perform genomic modification of microorganisms with their own evolved collection of computationally-engineered proteins for (micro)plastic degradation. We are not engineering single enzymes to enhance their catalytic activities, as it will computationally design multitude (hundreds) of proteins from the microorganism, and boost them with extra catalytic sites making them into plurizymes. The additional active sites able to degrade plastics will designed into the proteins employing advanced molecular simulation techniques such Protein Energy Landscape Exploration (PELE) together with machine learning methods. In this way, the proteins will not be from other microbial origin (heterologous), but their homologous proteins, to which an extra active-site capable of hydrolysing microplastics will be designed and genetically added, not altering the gene expression pattern of the microorganisms. These organisms will outperform the use of single enzymes because of the synergistic action of multiple evolved enzymes with one common goal: (micro)plastic degradation.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.