Back to the Future: Anticipatory synchronisation as a core mechanism for interar...
Back to the Future: Anticipatory synchronisation as a core mechanism for interarea brain communication
Our brain processes multitudes of signals based on recurrent network activity involving feedforward and feedback interarea communication. To funnel information efficiently between areas, low-frequency rhythmic neural activity patt...
Our brain processes multitudes of signals based on recurrent network activity involving feedforward and feedback interarea communication. To funnel information efficiently between areas, low-frequency rhythmic neural activity patterns couple to each other. It is an unresolved question how early sensory cortex (SC) can couple efficiently to both feedforward sensory information flow and feedback information flow arriving from higher order regions such as prefrontal cortex (PFC). Since PFC and sensory input lack direct coupling and operate with their own temporal dynamics, SC decouples from the sensory input when PFC couples to SC. It is therefore not possible to achieve efficient multi-area coupling in currently proposed feedback-driven coupling schemes. In search of a mechanism to address this problem I resort to a dynamical systems process called anticipated synchronization (AS). During AS, a receiving system (PFC) sends a copy of its own activity as delayed feedback to itself, allowing this system to - paradoxically - anticipate the dynamics of the driving system (SC). During AS, information from PFC is sent back to SC arriving at the right time in the future, while SC maintains sensory coupling. My goal in the next 5 years is to provide evidence of interarea AS coupling by creating a biophysical model of AS, empirically testing its predictions using ECoG data, psychophysics and EEG. By validating the use of tACS to control coupling, I will experimentally induce AS in a new closed-loop set-up that stimulates PFC with its own delayed activity. The proposed research will settle a critical theoretical debate on temporal coordination of interarea brain communication and will provide the computational basis for the hitherto unexplained excess of local feedback loops in the brain. The findings will inform new closed-loop treatment approaches and can improve biologically-inspired artificial intelligent systems that currently disregard the exact timing of information flow.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.