Autonomous Living Cell analYsis ON chip for Evaluation of space Environment Effe...
Autonomous Living Cell analYsis ON chip for Evaluation of space Environment Effects low power integrated lab on chip for the assessment of radiation damage on living systems in nanosatellite missions
The project aims at the design and realization of a new analytical platform implementing a series of innovative technologies able to provide a highly-integrated solution for the analysis in-situ of the effects of the space environ...
ver más
31/12/2025
Líder desconocido
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2022-10-14
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
Participantes
Conecta tu I+D
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ALCYONE
Duración del proyecto: 38 meses
Fecha Inicio: 2022-10-14
Fecha Fin: 2025-12-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The project aims at the design and realization of a new analytical platform implementing a series of innovative technologies able to provide a highly-integrated solution for the analysis in-situ of the effects of the space environment on model biological systems and for the evaluation of shielding technologies combined with radioprotective agents. The main objective of the project will be achieved through the development of a lab-on-chip device with integrated thin-film sensors and actuators that will implement an extremely compact cell-incubator capable to sample the status of the cell culture during a space mission using real-time monitoring techniques based on bioluminescence. Genetically modified microorganisms will be designed in order to monitor specific stress responses based on a luciferase-based reporter system. An electronic system will be integrated in the platform for the characterization of the radiation environment allowing to evaluate the correlation between observed biological effects and radiation exposure.
The main features of the proposed technology include low power consumption, extreme compactness, high data efficiency and full automation making it suitable for cubesat missions. In particular, a complete cubesat payload will be designed to address and solve any integration issue and to provide a test bench for a preliminary set of experiments to be carried out on ground facilities simulating the deep space environment. The proposed system will therefore represent a key element to pave the route toward deep space human mission as it offers the possibility to test the effects of long term exposure to the space environment on model biological systems using simple platforms as cubesats. This opens new scenarios where minor effort
will be required to plan multiple low-cost missions for improving the risk modeling and for testing new countermeasures in a continuous-improvement scheme.