This project lies at the nexus of complex and symbolic dynamics, group theory, decision problems and computation. It aims to solve major problems in each of these fields by means of automatic actions and relations.
Finite state a...
This project lies at the nexus of complex and symbolic dynamics, group theory, decision problems and computation. It aims to solve major problems in each of these fields by means of automatic actions and relations.
Finite state automata, pervasive in theoretical computer science, will serve to define self-similar mathematical objects, and produce efficient algorithms to manipulate them. — I will explore a novel notion of automatically acting group, encompassing the previously unrelated notions of automatic groups, automata groups and substitutive shifts.
Geometric group theory propounds the vision of groups as geometric objects. A basic notion is volume growth, and Milnor's still open gap problem asks for its possible range. — In this proposal, I will give candidates of groups with very slow superpolynomial growth, defined by their automatic action on dynamical systems, and a proof strategy.
A celebrated open problem by Gromov asks whether all groups are sofic. This property has too many valuable consequences to always be true, yet there is no known non-example! — I will present a strategy of producing non-sofic groups closely associated to automata.
Rational maps on the Riemann sphere provide a rich supply of dynamical systems. A fundamental goal is to give a combinatorial description of the dynamics across families of maps, constructing models of parameter space. — I will encode the maps via automatic actions, and study relations between automata to produce such models. I aim to achieve a full topological description (including the long-open connectedness problem) of Milnor's slices of quadratic maps.
This project will tackle these fundamental questions from group theory and dynamics, and develop presently unexplored interactions between them, through a unified use of automata. It will prove decidability of certain algorithmic problems such as Dehn's and Tarski's, and construct efficient tools to further our exploration of these mathematical universes.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.